skip to main content


Search for: All records

Creators/Authors contains: "K. Asgari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. arXiv:2311.11180v1 (Ed.)
    This paper presents a subgradient-based algorithm for constrained nonsmooth convex optimization that does not require projections onto the feasible set. While the well-established Frank-Wolfe algorithm and its variants already avoid projections, they are primarily designed for smooth objective functions. In con- trast, our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints. It achieves an ϵ-suboptimal solution in O(ϵ^−2) iterations, with each iteration requiring only a single (potentially inexact) Linear Minimization Oracle (LMO) call and a (possibly inexact) subgra- dient computation. This performance is consistent with existing lower bounds. Similar performance is observed when deterministic subgradients are replaced with stochastic subgradients. In the special case where there are no functional inequality constraints, our algorithm competes favorably with a recent nonsmooth projection-free method designed for constraint-free problems. Our approach uti- lizes a simple separation scheme in conjunction with a new Lagrange multiplier update rule. 
    more » « less