The hydrophobic cuticle of plant shoots serves as an important interaction interface with the environment. It consists of the lipid polymer cutin, embedded with and covered by waxes, and provides protection against stresses including desiccation, UV radiation, and pathogen attack. Bulliform cells form in longitudinal strips on the adaxial leaf surface, and have been implicated in the leaf rolling response observed in drought‐stressed grass leaves. In this study, we show that bulliform cells of the adult maize leaf epidermis have a specialized cuticle, and we investigate its function along with that of bulliform cells themselves. Bulliform cells displayed increased shrinkage compared to other epidermal cell types during dehydration of the leaf, providing a potential mechanism to facilitate leaf rolling. Analysis of natural variation was used to relate bulliform strip patterning to leaf rolling rate, providing further evidence of a role for bulliform cells in leaf rolling. Bulliform cell cuticles showed a distinct ultrastructure with increased cuticle thickness compared to other leaf epidermal cells. Comparisons of cuticular conductance between adaxial and abaxial leaf surfaces, and between bulliform‐enriched mutants versus wild‐type siblings, showed a correlation between elevated water loss rates and presence or increased density of bulliform cells, suggesting that bulliform cuticles are more water‐permeable. Biochemical analysis revealed altered cutin composition and increased cutin monomer content in bulliform‐enriched tissues. In particular, our findings suggest that an increase in 9,10‐epoxy‐18‐hydroxyoctadecanoic acid content, and a lower proportion of ferulate, are characteristics of bulliform cuticles. We hypothesize that elevated water permeability of the bulliform cell cuticle contributes to the differential shrinkage of these cells during leaf dehydration, thereby facilitating the function of bulliform cells in stress‐induced leaf rolling observed in grasses.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chamness, James (3)
-
Gore, Michael A. (3)
-
Kaczmar, Nicholas (3)
-
Baseggio, Matheus (2)
-
Buckler, Edward S. (2)
-
DellaPenna, Dean (2)
-
Magallanes‐Lundback, Maria (2)
-
Murray, Matthew (2)
-
Smith, Margaret E. (2)
-
Tracy, William F. (2)
-
Bourgault, Richard (1)
-
Matschi, Susanne (1)
-
Molina, Isabel (1)
-
Smith, Laurie G. (1)
-
Steinbach, Paul (1)
-
Vasquez, Miguel F. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Baseggio, Matheus ; Murray, Matthew ; Magallanes‐Lundback, Maria ; Kaczmar, Nicholas ; Chamness, James ; Buckler, Edward S. ; Smith, Margaret E. ; DellaPenna, Dean ; Tracy, William F. ; Gore, Michael A. ( , The Plant Genome)
-
Baseggio, Matheus ; Murray, Matthew ; Magallanes‐Lundback, Maria ; Kaczmar, Nicholas ; Chamness, James ; Buckler, Edward S. ; Smith, Margaret E. ; DellaPenna, Dean ; Tracy, William F. ; Gore, Michael A. ( , The Plant Genome)
Abstract Sweet corn (
Zea mays L.) is highly consumed in the United States, but does not make major contributions to the daily intake of carotenoids (provitamin A carotenoids, lutein and zeaxanthin) that would help in the prevention of health complications. A genome‐wide association study of seven kernel carotenoids and twelve derivative traits was conducted in a sweet corn inbred line association panel ranging from light to dark yellow in endosperm color to elucidate the genetic basis of carotenoid levels in fresh kernels. In agreement with earlier studies of maize kernels at maturity, we detected an association of β‐carotene hydroxylase (crtRB1 ) with β‐carotene concentration andlycopene epsilon cyclase (lcyE ) with the ratio of flux between the α‐ and β‐carotene branches in the carotenoid biosynthetic pathway. Additionally, we found that 5% or less of the evaluated inbred lines possessing theshrunken2 (sh2 ) endosperm mutation had the most favorablelycE allele orcrtRB1 haplotype for elevating β‐branch carotenoids (β‐carotene and zeaxanthin) or β‐carotene, respectively. Genomic prediction models with genome‐wide markers obtained moderately high predictive abilities for the carotenoid traits, especially lutein, and outperformed models with less markers that targeted candidate genes implicated in the synthesis, retention, and/or genetic control of kernel carotenoids. Taken together, our results constitute an important step toward increasing carotenoids in fresh sweet corn kernels.