skip to main content

Search for: All records

Creators/Authors contains: "Kadko, David C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This dataset reports Beryllium-7 concentrations from water samples collected on the MOSAiC expedition, PS122, aboard R/V Polarstern in the Central Arctic Ocean during 2019-2020. 
    more » « less
  2. Abstract

    The distributions of iodate and iodide were measured along the GEOTRACES GP15 meridional transect at 152°W from the shelf of Alaska to Papeete, Tahiti. The transect included oxygenated waters near the shelf of Alaska, the full water column in the central basin in the North Pacific Basin, the upper water column spanning across seasonally mixed regimes in the north, oligotrophic regimes in the central gyre, and the equatorial upwelling. Iodide concentrations are highest in the permanently stratified tropical mixed layers, which reflect accumulation due to light‐dependent biological processes, and decline rapidly below the euphotic zone. Vertical mixing coefficients (Kz), derived from complementary7Be data, enabled iodide oxidation rates to be estimated at two stations. Iodide half‐lives of 3–4 years show the importance of seasonal mixing processes in explaining north‐south differences in the transect, and also contribute to the decrease in iodide concentrations with depth below the mixed layer. These estimated half‐lives are consistent with a recent global iodine model. No evidence was found for significant inputs of iodine from the Alaskan continental margin, but there is a significant enrichment of iodide in bottom waters overlying deep sea sediments from the interior of the basin.

    more » « less
  3. null (Ed.)
    Naturally formed forest patches known as tree islands are found within lower-statured wetland matrices throughout the world, where they contrast sharply with the surrounding vegetation. In some coastal wetlands they are embedded in former freshwater marshes that are currently exposed to saltwater intrusion and mangrove encroachment associated with accelerating sea-level rise. In this study we resurveyed tree composition and determined environmental conditions in tree islands of the coastal Florida Everglades that had been examined two decades earlier. We asked whether tree islands in this coastal transition zone were differentiated geomorphologically as well as compositionally, and whether favorable geomorphology enabled coastal forest type(s) to maintain their compositional integrity against rising seas. Patterns of variation in geomorphology and soils among forest types were evident, but were dwarfed by differences between forest and adjacent wetlands. Tree island surfaces were elevated by 12–44 cm, and 210Pb analyses indicated that their current rates of vertical accretion were more rapid than those of surrounding ecosystems. Tree island soils were deeper and more phosphorus-rich than in the adjoining matrix. Salinity decreased interiorward in both tree island and marsh, but porewater was fresher in forest than marsh in Mixed Swamp Forest, midway along the coastal gradient where tropical hardwoods were most abundant. Little decrease in the abundance of tropical hardwood species nor increase in halophytes was observed during the study period. Our data suggest that geomorphological differences between organic tree island and marl marsh, perhaps driven by groundwater upwelling through more transmissive tree island soils, contributed to the forests’ compositional stability, though this stasis may be short-lived despite management efforts. 
    more » « less
  4. Abstract

    Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≤19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and >30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.

    more » « less
  5. Abstract

    A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.

    more » « less