- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kafkes, Diana (2)
-
Amsellem, Ariel J. (1)
-
Ciprijanovic, Aleksandra (1)
-
Downey, Kathryn (1)
-
Drlica-Wagner, Alex (1)
-
Duarte, Javier M. (1)
-
Herwig, Christian (1)
-
Huang, Yunzhi (1)
-
Jenkins, Sydney (1)
-
Keller, Rachael (1)
-
Mitrevski, Jovan (1)
-
Nord, Brian (1)
-
Pellico, William A. (1)
-
Perdue, Gabriel N. (1)
-
Quintero-Parra, Andres (1)
-
Schram, Malachi (1)
-
Schupbach, Brian A. (1)
-
Seiya, Kiyomi (1)
-
St. John, Jason (1)
-
Tanoglidis, Dimitrios (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tanoglidis, Dimitrios; Ciprijanovic, Aleksandra; Drlica-Wagner, Alex; Nord, Brian; Wang, Michael H.; Amsellem, Ariel J.; Downey, Kathryn; Jenkins, Sydney; Kafkes, Diana; Zhang, Zhuoqi (, Workshop at the 35th Conference on Neural Information Processing Systems (NeurIPS))Wide-field astronomical surveys are often affected by the presence of undesirable reflections (often known as “ghosting artifacts” or “ghosts”) and scattered-light artifacts. The identification and mitigation of these artifacts is important for rigorous astronomical analyses of faint and low-surface-brightness systems. In this work, we use images from the Dark Energy Survey (DES) to train, validate, and test a deep neural network (Mask R-CNN) to detect and localize ghosts and scatteredlight artifacts. We find that the ability of the Mask R-CNN model to identify affected regions is superior to that of conventional algorithms that model the physical processes that lead to such artifacts, thus providing a powerful technique for the automated detection of ghosting and scattered-light artifacts in current and near-future surveys.more » « less