For the last century, the source of sulfur in Earth’s very first organisms has remained a fundamental, unsolved enigma. While sulfates and their organic derivatives with sulfur in the S(+VI) oxidation state represent core nutrients in contemporary biochemistry, the limited bioavailability of sulfates during Earth’s early Archean period proposed that more soluble S(+IV) compounds served as the initial source of sulfur for the first terrestrial microorganisms. Here, we reveal via laboratory simulation experiments that the three simplest alkylsulfonic acids—water soluble organic S(+IV) compounds—can be efficiently produced in interstellar, sulfur-doped ices through interaction with galactic cosmic rays. This discovery opens a previously elusive path into the synthesis of vital astrobiological significance and untangles fundamental mechanisms of a facile preparation of sulfur-containing, biorelevant organics in extraterrestrial ices; these molecules can be eventually incorporated into comets and asteroids before their delivery and detection on Earth such as in the Murchison, Tagish Lake, and Allende meteorites along with the carbonaceous asteroid Ryugu.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available December 1, 2025 -
Glyceric acid [HOCH2CH(OH)COOH]—the simplest sugar acid—represents a key molecule in biochemical processes vital for metabolism in living organisms such as glycolysis. Although critically linked to the origins of life and identified in carbonaceous meteorites with abundances comparable to amino acids, the underlying mechanisms of its formation have remained elusive. Here, we report the very first abiotic synthesis of racemic glyceric acid via the barrierless radical-radical reaction of the hydroxycarbonyl radical (HOĊO) with 1,2-dihydroxyethyl (HOĊHCH2OH) radical in low-temperature carbon dioxide (CO2) and ethylene glycol (HOCH2CH2OH) ices. Using isomer-selective vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, glyceric acid was identified in the gas phase based on the adiabatic ionization energies and isotopic substitution studies. This work reveals the key reaction pathways for glyceric acid synthesis through nonequilibrium reactions from ubiquitous precursor molecules, advancing our fundamental knowledge of the formation pathways of key biorelevant organics—sugar acids—in deep space.
Free, publicly-accessible full text available March 15, 2025 -
Free, publicly-accessible full text available February 8, 2025
-
Free, publicly-accessible full text available May 1, 2025
-
Although methanediamine (CH 2 (NH 2 ) 2 ) has historically been the subject of theoretical scrutiny, it has never been isolated to date. Here, we report the preparation of methanediamine (CH 2 (NH 2 ) 2 )—the simplest diamine. Low-temperature interstellar analog ices composed of ammonia and methylamine were exposed to energetic electrons which act as proxies for secondary electrons produced in the track of galactic cosmic rays. These experimental conditions, which simulate the conditions within cold molecular clouds, result in radical formation and initiate aminomethyl (ĊH 2 NH 2 ) and amino ( N . H 2 ) radical chemistry. Exploiting tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) to make isomer-specific assignments, methanediamine was identified in the gas phase upon sublimation, while its isomer methylhydrazine (CH 3 NHNH 2 ) was not observed. The molecular formula was confirmed to be CH 6 N 2 through the use of isotopically labeled reactants. Methanediamine is the simplest molecule to contain the NCN moiety and could be a vital intermediate in the abiotic formation of heterocyclic and aromatic systems such as nucleobases, which all contain the NCN moiety.more » « less
-