skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaliyev, Alibek T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Machine learning (ML) is relied on for materials spectroscopy. It is challenging to make ML models fail because statistical correlations can mimic the physics without causality. Here, using a benchmark band‐excitation piezoresponse force microscopy polarization spectroscopy (BEPS) dataset the pitfalls of the so‐called “better”, “faster”, and “less‐biased” ML of electromechanical switching are demonstrated and overcome. Using a toy and real experimental dataset, it is demonstrated how linear nontemporal ML methods result in physically reasonable embedding (eigenvalues) while producing nonsensical eigenvectors and generated spectra, promoting misleading interpretations. A new method of unsupervised multimodal hyperspectral analysis of BEPS is demonstrated using long‐short‐term memory (LSTM) β‐variational autoencoders (β‐VAEs) . By including LSTM neurons, the ordinal nature of ferroelectric switching is considered. To improve the interpretability of the latent space, a variational Kullback–Leibler‐divergency regularization is imposed . Finally, regularization scheduling of β as a disentanglement metric is leveraged to reduce user bias. Combining these experiment‐inspired modifications enables the automated detection of ferroelectric switching mechanisms, including a complex two‐step, three‐state one. Ultimately, this work provides a robust ML method for the rapid discovery of electromechanical switching mechanisms in ferroelectrics and is applicable to other multimodal hyperspectral materials spectroscopies. 
    more » « less