- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Guo, Yichen (2)
-
Qin, Shuyu (2)
-
Agar, Joshua (1)
-
Agar, Joshua C. (1)
-
Forelli, Ryan F (1)
-
Gholami, Amir (1)
-
Harris, Philip (1)
-
Kaliyev, Alibek T (1)
-
Kaliyev, Alibek T. (1)
-
Mahoney, Michael W (1)
-
Memik, Seda (1)
-
Takáč, Martin (1)
-
Tran, Nhan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Qin, Shuyu; Guo, Yichen; Kaliyev, Alibek T.; Agar, Joshua C. (, Advanced Materials)Abstract Machine learning (ML) is relied on for materials spectroscopy. It is challenging to make ML models fail because statistical correlations can mimic the physics without causality. Here, using a benchmark band‐excitation piezoresponse force microscopy polarization spectroscopy (BEPS) dataset the pitfalls of the so‐called “better”, “faster”, and “less‐biased” ML of electromechanical switching are demonstrated and overcome. Using a toy and real experimental dataset, it is demonstrated how linear nontemporal ML methods result in physically reasonable embedding (eigenvalues) while producing nonsensical eigenvectors and generated spectra, promoting misleading interpretations. A new method of unsupervised multimodal hyperspectral analysis of BEPS is demonstrated using long‐short‐term memory (LSTM) β‐variational autoencoders (β‐VAEs) . By including LSTM neurons, the ordinal nature of ferroelectric switching is considered. To improve the interpretability of the latent space, a variational Kullback–Leibler‐divergency regularization is imposed . Finally, regularization scheduling of β as a disentanglement metric is leveraged to reduce user bias. Combining these experiment‐inspired modifications enables the automated detection of ferroelectric switching mechanisms, including a complex two‐step, three‐state one. Ultimately, this work provides a robust ML method for the rapid discovery of electromechanical switching mechanisms in ferroelectrics and is applicable to other multimodal hyperspectral materials spectroscopies.more » « less