skip to main content


Search for: All records

Creators/Authors contains: "Kalra, Tarandeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Physical processes driving barrier island change during storms are important to understand to mitigate coastal hazards and to evaluate conceptual models for barrier evolution. Spatial variations in barrier island topography, landcover characteristics, and nearshore and back‐barrier hydrodynamics can yield complex morphological change that requires models of increasing resolution and physical complexity to predict. Using the Coupled Ocean‐Atmosphere‐Wave‐Sediment Transport (COAWST) modeling system, we investigated two barrier island breaches that occurred on Fire Island, NY during Hurricane Sandy (2012) and at Matanzas, FL during Hurricane Matthew (2016). The model employed a recently implemented infragravity (IG) wave driver to represent the important effects of IG waves on nearshore water levels and sediment transport. The model simulated breaching and other changes with good skill at both locations, resolving differences in the processes and evolution. The breach simulated at Fire Island was 250 m west of the observed breach, whereas the breach simulated at Matanzas was within 100 m of the observed breach. Implementation of the vegetation module of COAWST to allow three‐dimensional drag over dune vegetation at Fire Island improved model skill by decreasing flows across the back‐barrier, as opposed to varying bottom roughness that did not positively alter model response. Analysis of breach processes at Matanzas indicated that both far‐field and local hydrodynamics influenced breach creation and evolution, including remotely generated waves and surge, but also surge propagation through back‐barrier waterways. This work underscores the importance of resolving the complexity of nearshore and back‐barrier systems when predicting barrier island change during extreme events.

     
    more » « less
  3. Abstract

    The salinity structure in an estuary is controlled by time‐dependent mixing processes. However, the locations and temporal variability of where significant mixing occurs is not well‐understood. Here we utilize a tracer variance approach to demonstrate the spatial and temporal structure of salinity mixing in the Hudson River Estuary. We run a 4‐month hydrodynamic simulation of the tides, currents, and salinity that captures the spring‐neap tidal variability as well as wind‐driven and freshwater flow events. On a spring‐neap time scale, salinity variance dissipation (mixing) occurs predominantly during the transition from neap to spring tides. On a tidal time scale, 60% of the salinity variance dissipation occurs during ebb tides and 40% during flood tides. Spatially, mixing during ebbs occurs primarily where lateral bottom salinity fronts intersect the bed at the transition from the main channel to adjacent shoals. During ebbs, these lateral fronts form seaward of constrictions located at multiple locations along the estuary. During floods, mixing is generated by a shear layer elevated in the water column at the top of the mixed bottom boundary layer, where variations in the along channel density gradients locally enhance the baroclinic pressure gradient leading to stronger vertical shear and more mixing. For both ebb and flood, the mixing occurs at the location of overlap of strong vertical stratification and eddy diffusivity, not at the maximum of either of those quantities. This understanding lends a new insight to the spatial and time dependence of the estuarine salinity structure.

     
    more » « less