- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kaltsoyannis, Nikolas (2)
-
Arnold, Polly L (1)
-
Baeza Cinco, Miguel Á. (1)
-
Britt, R David (1)
-
Hayton, Trevor W. (1)
-
Hernandez, Matthew (1)
-
Kelly, Rory P (1)
-
Lam, Francis YT (1)
-
Lara, Jaden (1)
-
Ochiai, Tatsumi (1)
-
Rao, Guodong (1)
-
Trinh, T Michael (1)
-
Wong, Anthony (1)
-
Wu, Guang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dinitrogen is a challenging molecule to reduce to useful products under ambient conditions. The range of d-block metal complexes that can catalyze dinitrogen reduction to ammonia or tris(silyl)amines under ambient conditions has increased recently but lacks electropositive metal complexes, such as those of the f-block, which lack filled d-orbitals that would support classical binding modes of N2. Here, metallacyclic phenolate structures with lanthanide or group 4 cations can bind dinitrogen and catalyze its conversion to bis(silyl)amines under ambient conditions. The formation of this unusual product is controlled by metallacycle sterics. The group 4 complexes featuring small cavities are most selective for bis(silyl)amine, while lanthanide complexes and the solvated uranium(IV) congener, with larger cavities, can also make a conventional tris(silyl)amine product. These results offer new catalytic applications for plentiful titanium and more earth-abundant members of the lanthanides that are also less toxic than many base metals used in catalysis.more » « less
-
Baeza Cinco, Miguel Á.; Wu, Guang; Kaltsoyannis, Nikolas; Hayton, Trevor W. (, Angewandte Chemie International Edition)Abstract The “masked” terminal Zn sulfide, [K(2.2.2‐cryptand)][MeLZn(S)] (2) (MeL={(2,6‐iPr2C6H3)NC(Me)}2CH), was isolated via reaction of [MeLZnSCPh3] (1) with 2.3 equivalents of KC8in THF, in the presence of 2.2.2‐cryptand, at −78 °C. Complex2reacts readily with PhCCH and N2O to form [K(2.2.2‐cryptand)][MeLZn(SH)(CCPh)] (4) and [K(2.2.2‐cryptand)][MeLZn(SNNO)] (5), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of2was examined computationally and compared with the previously reported Ni congener, [K(2.2.2‐cryptand)][tBuLNi(S)] (tBuL={(2,6‐iPr2C6H3)NC(tBu)}2CH).more » « less