skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kamberov, Yana G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. XEDAR is a member of the TNF receptor subfamily and a mediator of the ectodysplasin (EDA) pathway. EDA signaling plays evolutionarily conserved roles in the development of the ectodermal appendage organ class, which includes hair, eccrine sweat glands, and mammary glands. Loss-of-function sequence variants of EDA, which encodes the two major ligand isoforms, EDA-A1 and EDA-A2, result in X-linked hypohidrotic ectodermal dysplasia characterized by defects in two or more types of ectodermal appendages. EDA-A1 and EDA-A2 signal through the receptors EDAR and XEDAR, respectively. Although the contributions of the EDA-A1/EDAR signaling pathway to EDA-dependent ectodermal appendage phenotypes have been extensively characterized, the significance of the EDA-A2/XEDAR branch of the pathway has remained obscure. In this study, we report the phenotypic consequences of disrupting the EDA-A2/XEDAR pathway on mammary gland differentiation and growth. Using a mouse Xedar knockout model, we show that Xedar has a specific and temporally restricted role in promoting late pubertal growth and branching of the mammary epithelium that can be influenced by genetic background. Our findings implicate Xedar in ectodermal appendage development and suggest that the EDA-A2/XEDAR signaling axis contributes to the etiology of EDA-dependent mammary phenotypes. 
    more » « less
  2. Eccrine sweat glands are indispensable for human thermoregulation and, similar to other mammalian skin appendages, form from multipotent epidermal progenitors. Limited understanding of how epidermal progen- itors specialize to form these vital organs has precluded therapeutic efforts toward their regeneration. Herein, we applied single-nucleus transcriptomics to compare the expression content of wild-type, eccrine-forming mouse skin to that of mice harboring a skin-specific disruption of Engrailed 1 (En1), a transcription factor that promotes eccrine gland formation in humans and mice. We identify two concurrent but disproportionate epidermal transcriptomes in the early eccrine anlagen: one that is shared with hair follicles and one that is En1 dependent and eccrine specific. We demonstrate that eccrine development requires the induction of a dermal niche proximal to each developing gland in humans and mice. Our study defines the signatures of eccrine identity and uncovers the eccrine dermal niche, setting the stage for targeted regeneration and comprehensive skin repair. 
    more » « less
  3. Beier, David R. (Ed.)
    Enhancers are context-specific regulators of expression that drive biological complexity and variation through the redeployment of conserved genes. An example of this is the enhancer-mediated control of Engrailed 1(EN1), a pleiotropic gene whose expression is required for the formation of mammalian eccrine sweat glands. We previously identified the En1 candidate enhancer (ECE) 18 cis-regulatory element that has been highly and repeatedly derived on the human lineage to potentiate ectodermal EN1 and induce our species’ uniquely high eccrine gland density. Intriguingly, ECE18 quantitative activity is negligible outside of primates and ECE18 is not required for En1 regulation and eccrine gland formation in mice, raising the possibility that distinct enhancers have evolved to modulate the same trait. Here we report the identification of the ECE20 enhancer and show it has conserved functionality in mouse and human developing skin ectoderm. Unlike ECE18, knock-out of ECE20 in mice reduces ectodermal En1 and eccrine gland number. Notably, we find ECE20, but not ECE18, is also required for En1 expression in the embryonic mouse brain, demonstrating that ECE20 is a pleiotropic En1 enhancer. Finally, that ECE18 deletion does not potentiate the eccrine phenotype of ECE20 knock-out mice supports the secondary incorporation of ECE18 into the regulation of this trait in primates. Our findings reveal that the mammalian En1 regulatory machinery diversified to incorporate both shared and lineage-restricted enhancers to regulate the same phenotype, and also have implications for understanding the forces that shape the robustness and evolvability of developmental traits. 
    more » « less
  4. Humans sweat to cool their bodies and have by far the highest eccrine sweat gland density among primates. Humans’ high eccrine gland density has long been recognized as a hallmark human evolutionary adaptation, but its genetic basis has been unknown. In humans, expression of the Engrailed 1 ( EN1 ) transcription factor correlates with the onset of eccrine gland formation. In mice, regulation of ectodermal En1 expression is a major determinant of natural variation in eccrine gland density between strains, and increased En1 expression promotes the specification of more eccrine glands. Here, we show that regulation of EN1 has evolved specifically on the human lineage to promote eccrine gland formation. Using comparative genomics and validation of ectodermal enhancer activity in mice, we identified a human EN1 skin enhancer, hECE18. We showed that multiple epistatically interacting derived substitutions in the human ECE18 enhancer increased its activity compared with nonhuman ape orthologs in cultured keratinocytes. Repression of hECE18 in human cultured keratinocytes specifically attenuated EN1 expression, indicating this element positively regulates EN1 in this context. In a humanized enhancer knock-in mouse, hECE18 increased developmental En1 expression in the skin to induce the formation of more eccrine glands. Our study uncovers a genetic basis contributing to the evolution of one of the most singular human adaptations and implicates multiple interacting mutations in a single enhancer as a mechanism for human evolutionary change. 
    more » « less