skip to main content

Search for: All records

Creators/Authors contains: "Kamper, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A number of recent studies have started to investigate how speech systems can be trained on untranscribed speech by leveraging accompanying images at training time. Examples of tasks include keyword prediction and within- and acrossmode retrieval. Here we consider how such models can be used for query-by-example (QbE) search, the task of retrieving utterances relevant to a given spoken query. We are particularly interested in semantic QbE, where the task is not only to retrieve utterances containing exact instances of the query, but also utterances whose meaning is relevant to the query. We follow a segmental QbE approach where variable-durationmore »speech segments (queries, search utterances) are mapped to fixeddimensional embedding vectors. We show that a QbE system using an embedding function trained on visually grounded speech data outperforms a purely acoustic QbE system in terms of both exact and semantic retrieval performance.« less
  2. Recent work has shown that speech paired with images can be used to learn semantically meaningful speech representations even without any textual supervision. In real-world low-resource settings, however, we often have access to some transcribed speech. We study whether and how visual grounding is useful in the presence of varying amounts of textual supervision. In particular, we consider the task of semantic speech retrieval in a low-resource setting. We use a previously studied data set and task, where models are trained on images with spoken captions and evaluated on human judgments of semantic relevance. We propose a multitask learning approachmore »to leverage both visual and textual modalities, with visual supervision in the form of keyword probabilities from an external tagger. We find that visual grounding is helpful even in the presence of textual supervision, and we analyze this effect over a range of sizes of transcribed data sets. With ∼5 hours of transcribed speech, we obtain 23% higher average precision when also using visual supervision.« less
  3. We present a simple approach to improve direct speech-to-text translation (ST) when the source language is low-resource: we pre-train the model on a high-resource automatic speech recognition (ASR) task, and then fine-tune its parameters for ST. We demonstrate that our approach is effective by pre-training on 300 hours of English ASR data to improve SpanishEnglish ST from 10.8 to 20.2 BLEU when only 20 hours of Spanish-English ST training data are available. Through an ablation study, we find that the pre-trained encoder (acoustic model) accounts for most of the improvement, despite the fact that the shared language in these tasksmore »is the target language text, not the source language audio. Applying this insight, we show that pre-training on ASR helps ST even when the ASR language differs from both source and target ST languages: pre-training on French ASR also improves Spanish-English ST. Finally, we show that the approach improves performance on a true low-resource task: pre-training on a combination of English ASR and French ASR improves Mboshi-French ST, where only 4 hours of data are available, from 3.5 to 7.1 BLEU.« less