skip to main content

Search for: All records

Creators/Authors contains: "Kanamori, Hiroo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The 2022 Tonga eruption produced ground motions dominated by force interactions between the solid Earth and atmosphere.
    Free, publicly-accessible full text available January 11, 2024
  2. Abstract In the aftermath of a significant earthquake, seismologists are frequently asked questions by the media and public regarding possible interactions with recent prior events, including events at great distances away, along with prospects of larger events yet to come, both locally and remotely. For regions with substantial earthquake catalogs that provide information on the regional Gutenberg–Richter magnitude–frequency relationship, Omori temporal aftershock statistical behavior, and aftershock productivity parameters, probabilistic responses can be provided for likelihood of nearby future events of larger magnitude, as well as expected behavior of the overall aftershock sequence. However, such procedures generally involve uncertain extrapolations of parameterized equations to infrequent large events and do not provide answers to inquiries about long-range interactions, either retrospectively for interaction with prior remote large events or prospectively for interaction with future remote large events. Dynamic triggering that may be involved in such long-range interactions occurs, often with significant temporal delay, but is not well understood, making it difficult to respond to related inquiries. One approach to addressing such inquiries is to provide retrospective or prospective occurrence histories for large earthquakes based on global catalogs; while not providing quantitative understanding of any physical interaction, experience-based guidance on the (typically very low)more »chances of causal interactions can inform public understanding of likelihood of specific scenarios they are commonly very interested in.« less
  3. Free, publicly-accessible full text available September 9, 2023
  4. Free, publicly-accessible full text available July 3, 2023
  5. On 22 December 2018, a devastating tsunami struck Sunda Strait, Indonesia without warning, leaving 437 dead and thousands injured along the western Java and southern Sumatra coastlines. Synthetic aperture radar and broadband seismic observations demonstrate that a small, <~0.2 km 3 landslide on the southwestern flank of the actively erupting volcano Anak Krakatau generated the tsunami. The landslide did not produce strong short-period seismic waves; thus, precursory ground shaking did not provide a tsunami warning. The source of long-period ground motions during the landslide can be represented as a 12° upward-dipping single-force directed northeastward, with peak magnitude of ~6.1 × 10 11 N and quasi-sinusoidal time duration of ~70 s. Rapid quantification of a landslide source process by long-period seismic wave inversions for moment-tensor and single-force parameterizations using regional seismic data available within ~8 min can provide a basis for future fast tsunami warnings, as is also the case for tsunami earthquakes.