skip to main content

Search for: All records

Creators/Authors contains: "Kandemir, Mahmut Taylan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Deep Learning Recommendation Models (DLRMs) are very popular in personalized recommendation systems and are a major contributor to the data-center AI cycles. Due to the high computational and memory bandwidth needs of DLRMs, specifically the embedding stage in DLRM inferences, both CPUs and GPUs are used for hosting such workloads. This is primarily because of the heavy irregular memory accesses in the embedding stage of computation that leads to significant stalls in the CPU pipeline. As the model and parameter sizes keep increasing with newer recommendation models, the computational dominance of the embedding stage also grows, thereby, bringing into question the suitability of CPUs for inference. In this paper, we first quantify the cause of irregular accesses and their impact on caches and observe that off-chip memory access is the main contributor to high latency. Therefore, we exploit two well-known techniques: (1) Software prefetching, to hide the memory access latency suffered by the demand loads and (2) Overlapping computation and memory accesses, to reduce CPU stalls via hyperthreading to minimize the overall execution time. We evaluate our work on a single-core and 24-core configuration with the latest recommendation models and recently released production traces. Our integrated techniques speed up the inference by up to 1.59x, and on average by 1.4x. 
    more » « less
  3. The growing popularity of the serverless platform has seen an increase in the number and variety of applications (apps) being deployed on it. The majority of these apps process user-provided input to produce the desired results. Existing work in the area of input-sensitive profiling has empirically shown that many such apps have input size-dependent execution times which can be determined through modelling techniques. Nevertheless, existing serverless resource management frameworks are agnostic to the input size-sensitive nature of these apps. We demonstrate in this paper that this can potentially lead to container over-provisioning and/or end-to-end Service Level Objective (SLO) violations. To address this, we propose Cypress, an input size-sensitive resource management framework, that minimizes the containers provisioned for apps, while ensuring a high degree of SLO compliance. We perform an extensive evaluation of Cypress on top of a Kubernetes-managed cluster using 5 apps from the AWS Serverless Application Repository and/or Open-FaaS Function Store with real-world traces and varied input size distributions. Our experimental results show that Cypress spawns up to 66% fewer containers, thereby, improving container utilization and saving cluster-wide energy by up to 2.95X and 23%, respectively, versus state-of-the-art frameworks, while remaining highly SLO-compliant (up to 99.99%). 
    more » « less
  4. Deep neural networks (DNNs) are increasingly popular owing to their ability to solve complex problems such as image recognition, autonomous driving, and natural language processing. Their growing complexity coupled with the use of larger volumes of training data (to achieve acceptable accuracy) has warranted the use of GPUs and other accelerators. Such accelerators are typically expensive, with users having to pay a high upfront cost to acquire them. For infrequent use, users can, instead, leverage the public cloud to mitigate the high acquisition cost. However, with the wide diversity of hardware instances (particularly GPU instances) available in public cloud, it becomes challenging for a user to make an appropriate choice from a cost/performance standpoint. In this work, we try to address this problem by (i) introducing a comprehensive distributed deep learning (DDL) profiler Stash, which determines the various execution stalls that DDL suffers from, and (ii) using Stash to extensively characterize various public cloud GPU instances by running popular DNN models on them. Specifically, it estimates two types of communication stalls, namely, interconnect and network stalls, that play a dominant role in DDL execution time. Stash is implemented on top of prior work, DS-analyzer, that computes only the CPU and disk stalls. Using our detailed stall characterization, we list the advantages and shortcomings of public cloud GPU instances for users to help them make an informed decision(s). Our characterization results indicate that the more expensive GPU instances may not be the most performant for all DNN models and that AWS can sometimes sub-optimally allocate hardware interconnect resources. Specifically, the intra-machine interconnect can introduce communication overheads of up to 90% of DNN training time and the network-connected instances can suffer from up to 5× slowdown compared to training on a single instance. Furthermore, (iii) we also model the impact of DNN macroscopic features such as the number of layers and the number of gradients on communication stalls, and finally, (iv) we briefly discuss a cost comparison with existing work. 
    more » « less
  5. The high-profile Spectre attack and its variants have revealed that speculative execution may leave secret-dependent footprints in the cache, allowing an attacker to learn confidential data. However, existing static side-channel detectors either ignore speculative execution, leading to false negatives, or lack a precise cache model, leading to false positives. In this paper, somewhat surprisingly, we show that it is challenging to develop a speculation-aware static analysis with precise cache models: a combination of existing works does not necessarily catch all cache side channels. Motivated by this observation, we present a new semantic definition of security against cache-based side-channel attacks, called Speculative-Aware noninterference (SANI), which is applicable to a variety of attacks and cache models. We also develop SpecSafe to detect the violations of SANI. Unlike other speculation-aware symbolic executors, SpecSafe employs a novel program transformation so that SANI can be soundly checked by speculation-unaware side-channel detectors. SpecSafe is shown to be both scalable and accurate on a set of moderately sized benchmarks, including commonly used cryptography libraries. 
    more » « less
  6. null (Ed.)
    There is an ongoing trend to increasingly offload inference tasks, such as CNNs, to edge devices in many IoT scenarios. As energy harvesting is an attractive IoT power source, recent ReRAM-based CNN accelerators have been designed for operation on harvested energy. When addressing the instability problems of harvested energy, prior optimization techniques often assume that the load is fixed, overlooking the close interactions among input power, computational load, and circuit efficiency, or adapt the dynamic load to match the just-in-time incoming power under a simple harvesting architecture with no intermediate energy storage. Targeting a more efficient harvesting architecture equipped with both energy storage and energy delivery modules, this paper is the first effort to target whole system, end-to-end efficiency for an energy harvesting ReRAM-based accelerator. First, we model the relationships among ReRAM load power, DC-DC converter efficiency, and power failure overhead. Then, a maximum computation progress tracking scheme ( MaxTracker ) is proposed to achieve a joint optimization of the whole system by tuning the load power of the ReRAM-based accelerator. Specifically, MaxTracker accommodates both continuous and intermittent computing schemes and provides dynamic ReRAM load according to harvesting scenarios. We evaluate MaxTracker over four input power scenarios, and the experimental results show average speedups of 38.4%/40.3% (up to 51.3%/84.4%), over a full activation scheme (with energy storage) and order-of-magnitude speedups over the recently proposed (energy storage-less) ResiRCA technique. Furthermore, we also explore MaxTracker in combination with the Capybara reconfigurable capacitor approach to offer more flexible tuners and thus further boost the system performance. 
    more » « less