skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kane, Margaret"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Complex ferromagnetic oxides have been identified as possible candidate materials for sources of spin currents. Here we study bilayers of ferromagnetic (La2/3Sr1/3)MnO3 (LSMO) and metallic CaRuO3 (CRO) on LSAT substrates as a model system for spin pumping. Ferromagnetic resonance (FMR) measurements of these bilayers show evidence of spin pumping across the interface in the form of an increase in Gilbert damping with the addition of CRO. FMR indicates that the presence of CRO modifies the magnetic anisotropy of the LSMO. By increasing CRO thickness, we find a reduction of the out-of-plane anisotropy and simultaneous rotation of the easy axis within the plane, from the ⟨110⟩ to ⟨100⟩ axis. The evolution of magnetic anisotropy determined by FMR disagrees with that measured by bulk SQUID magnetometry and is accompanied by structural distortions in the LSMO layer as measured by x-ray diffraction, thus suggesting a change in magnetic anisotropy attributed to structural distortions imposed on LSMO by CRO. These results suggest that while LSMO and CRO remain promising candidates for efficient pure spin current generation and detection, respectively, epitaxial integration of perovskites will cause additional changes which must be accounted for in spintronics applications. 
    more » « less
  2. Zamanian, Mostafa (Ed.)
    Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S . haematobium is required. Hybridisation/introgression events and molecular variation among members of the S . haematobium -group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover ‘new’ genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S . haematobium among some geographical locations in Africa revealed unique genomic ‘signatures’ that matched species other than S . haematobium , indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S . haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis. 
    more » « less