Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Evaluating the quality of accessible image captions with human raters is difficult, as it may be difficult for a visually impaired user to know how comprehensive a caption is, whereas a sighted assistant may not know what information a user will need from a caption. To explore how image captioners and caption consumers assess caption content, we conducted a series of collaborative captioning sessions in which six pairs, consisting of a blind person and their sighted partner, worked together to discuss, create, and evaluate image captions. By making captioning a collaborative task, we were able to observe captioning strategies, to elicit questions and answers about image captions, and to explore blind users’ caption preferences. Our findings provide insight about the process of creating good captions and serve as a case study for cross-ability collaboration between blind and sighted people.more » « less
-
Many images on the Web, including photographs and artistic images, feature spatial relationships between objects that are inaccessible to someone who is blind or visually impaired even when a text description is provided. While some tools exist to manually create accessible image descriptions, this work is time consuming and requires specialized tools. We introduce an approach that automatically creates spatially registered image labels based on how a sighted person naturally interacts with the image. Our system collects behavioral data from sighted viewers of an image, specifically eye gaze data and spoken descriptions, and uses them to generate a spatially indexed accessible image that can then be explored using an audio-based touch screen application. We describe our approach to assigning text labels to locations in an image based on eye gaze. We then report on two formative studies with blind users testing EyeDescribe. Our approach resulted in correct labels for all objects in our image set. Participants were able to better recall the location of objects when given both object labels and spatial locations. This approach provides a new method for creating accessible images with minimum required effort.more » « less
-
Tactile graphics are a common way to present information to people with vision impairments. Tactile graphics can be used to explore a broad range of static visual content but aren’t well suited to representing animation or interactivity. We introduce a new approach to creating dynamic tactile graphics that combines a touch screen tablet, static tactile overlays, and small mobile robots. We introduce a prototype system called RoboGraphics and several proof-of-concept applications. We evaluated our prototype with seven participants with varying levels of vision, comparing the RoboGraphics approach to a flat screen, audio-tactile interface. Our results show that dynamic tactile graphics can help visually impaired participants explore data quickly and accurately.more » « less
-
Computer science education is widely viewed as a path to empowerment for young people, potentially leading to higher education, careers, and development of computational thinking skills. However, few resources exist for people with cognitive disabilities to learn computer science. In this paper, we document our observations of a successful program in which young adults with cognitive disabilities are trained in computing concepts. Through field observations and interviews, we identify instructional strategies used by this group, accessibility challenges encountered by this group, and how instructors and students leverage peer learning to support technical education. Our findings lead to guidelines for developing tools and curricula to support young adults with cognitive disabilities in learning computer science.more » « less
-
Block-based programming languages can support novice programmers through features such as simplified code syntax and user-friendly libraries. However, most block-based programming languages are highly visual, which makes them inaccessible to blind and visually impaired students. To address the inaccessibility of block-based languages, we introduce StoryBlocks, a tangible block-based game that enables blind programmers to learn basic programming concepts by creating audio stories. In this paper, we document the design of StoryBlocks and report on a series of design activities with groups of teachers, Braille experts, and students. Participants in our design sessions worked together to create accessible stories, and their feedback offers insights for the future development of accessible, tangible programming tools.more » « less
-
Introductory computer programming presents a number of challenges for blind and visually impaired screen reader users. In addition to the challenges of navigating complex code documents using a screen reader, novice programmers who are blind are often unable to experience fun coding projects such as programming games or animations. To address these accessibility barriers, we developed Bonk, an accessible programming environment that enables the creation of interactive audio games using a subset of the JavaScript programming language. Bonk enables novice programmers to create, share, play, and remix accessible audio games. In this paper, we introduce the Bonk programming toolkit and describe its use in a week-long programming workshop with blind and visually impaired high school students. Students in the workshop were able to create and share original audio games using Bonk, and expressed enthusiasm about furthering their programming knowledge.more » « less
-
Video and animation are common ways of delivering concepts that cannot be easily communicated through text. This visual information is often inaccessible to blind and visually impaired people, and alternative representations such as Braille and audio may leave out important details. Audio-haptic displays with along with supplemental descriptions allow for the presentation of complex spatial information, along with accompanying description. We introduce the Haptic Video Player, a system for authoring and presenting audio-haptic content from videos. The Haptic Video Player presents video using mobile robots that can be touched as they move over a touch screen. We describe the design of the Haptic Video Player system, and present user studies with educators and blind individuals that demonstrate the ability of this system to render dynamic visual content non-visually.more » « less