Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 13, 2025
-
Rusănescu, C; Ungureanu, N (Ed.)Excessive land application of poultry litter (PL) may lead to surface runoff of nitrogen (N) and phosphorus (P), which cause eutrophication, fish death, and water pollution that ultimately have negative effects on humans and animals. Increases in poultry production in the Delmarva Peninsula underscore the need for more efficient, cost-effective, and sustainable disposal technologies for processing PL instead of direct land application. The pyrolysis conversion process can potentially produce nutrient-rich poultry litter biochar (PLB), while the pyrolysis process can change the N and P to a more stable component, thus reducing its runoff. Pyrolysis also kills off any microorganisms that would otherwise trigger negative environmental health effects. This study is to apply an integrated method and investigate the effect of pyrolysis temperature (300 °C, 500 °C), poultry litter source (different feedstock composition), and bedding material mixture (10% pine shavings) on PLB qualities and quantities. Proximate and ultimate analysis showed PL sources and bedding material addition influenced the physicochemical properties of feedstock. The SEM and BET surface results indicate that pyrolysis temperature had a significant effect on changing the PLB morphology and structure, as well as the pH value (7.78 at 300 °C vs. 8.78 at 500 °C), extractable phosphorus (P) (18.73 ppm at 300 °C vs. 11.72 ppm at 500 °C), sulfur (S) (363 ppm at 300 °C vs. 344 ppm at 500 °C), and production yield of PLBs (47.65% at 300 °C vs. 60.62% at 500 °C). The results further suggest that adding a bedding material mixture (10% pine shavings) to PLs improved qualities by reducing the content of extractable P and S, as well as pH values of PLBs. This study also found the increment in both the pore volume and the area of Bethel Farm was higher than that of Sun Farm. Characterization and investigation of qualities and quantities of PLB using the integrated framework suggest that PL from Bethel Farm could produce better-quality PLB at a higher pyrolysis temperature and bedding material mixture to control N and P runoff problems.more » « lessFree, publicly-accessible full text available June 12, 2025
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract Name that Neutrinois a citizen science project where volunteers aid in classification of events for the IceCube Neutrino Observatory, an immense particle detector at the geographic South Pole. From March 2023 to September 2023, volunteers did classifications of videos produced from simulated data of both neutrino signal and background interactions.Name that Neutrinoobtained more than 128,000 classifications by over 1800 registered volunteers that were compared to results obtained by a deep neural network machine-learning algorithm. Possible improvements for bothName that Neutrinoand the deep neural network are discussed.more » « less
-
IceCube_Collaboration (Ed.)Abstract More than 10000 photomultiplier tubes (PMTs) with a diameter of 80 mm will be installed in multi-PMT Digital Optical Modules (mDOMs) of the IceCube Upgrade. These have been tested and pre-calibrated at two sites. A throughput of more than 1000 PMTs per week with both sites was achieved with a modular design of the testing facilities and highly automated testing procedures. The testing facilities can easily be adapted to other PMTs, such that they can, e.g., be re-used for testing the PMTs for IceCube-Gen2. Single photoelectron response, high voltage dependence, time resolution, prepulse, late pulse, afterpulse probabilities, and dark rates were measured for each PMT. We describe the design of the testing facilities, the testing procedures, and the results of the acceptance tests.more » « lessFree, publicly-accessible full text available July 1, 2025