skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kang, Han Byul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thermal energy harvesting from natural resources and waste heat is becoming critical due to ever-increasing environmental concerns. However, so far, available thermal energy harvesting technologies have only been able to generate electricity from large temperature gradients. Here, we report a fundamental breakthrough in low-grade thermal energy harvesting and demonstrate a device based on the thermomagnetic effect that uses ambient conditions as the heat sink and operates from a heat source at temperatures as low as 24 °C. This concept can convert temperature gradients as low as 2 °C into electricity while operating near room temperature. The device is found to exhibit a power density (power per unit volume of active material) of 105 μW cm −3 at a temperature difference of 2 °C, which increases to 465 μW cm −3 at a temperature difference of 10 °C. The power density increases by 2.5 times in the presence of wind with a speed of 2.0 m s −1 . This advancement in thermal energy harvesting technology will have a transformative effect on renewable energy generation and in reducing global warming. 
    more » « less
  2. Abstract

    The rapid enhancement of the thermoelectric (TE) figure‐of‐merit (zT) in the past decade has opened opportunities for developing and transitioning solid state waste heat recovery systems. Here, a segmented TE device architecture is demonstrated in conjunction with heterogeneous material integration that results in high unicouple‐level conversion efficiency of 12% under a temperature difference of 584 K. This breakthrough is the result of success in fabricating bismuth telluride/half‐Heusler segmented TE unicouple modules using a “hot‐to‐cold” fabrication technique that provides significantly reduced electrical and thermal contact resistance. Extensive analytical and finite element modeling is conducted to provide an understanding of the nature of thermal transport and contributions arising from various thermal and physical parameters. Bismuth telluride/half‐Heusler based segmented thermoelectric generators (TEGs) can provide higher practical temperature difference with optimum averagezTacross the whole operating range. These results will have immediate impact on the design and development of TEGs and in the general design of devices based upon heterostructures that take advantage of gradients in the figure of merit.

     
    more » « less