Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Travel-time computation with large transportation networks is often computationally intensive for two main reasons: 1) large computer memory is required to handle large networks; and 2) calculating shortest-distance paths over large networks is computing intensive. Therefore, previous research tends to limit their spatial extent to reduce computational intensity or resolve computational intensity with advanced cyberinfrastructure. In this context, this article describes a new Spatial Partitioning Algorithm for Scalable Travel-time Computation (SPASTC) that is designed based on spatial domain decomposition with computer memory limit explicitly considered. SPASTC preserves spatial relationships required for travel-time computation and respects a user-specified memory limit, which allows efficient and large-scale travel-time computation within the given memory limit. We demonstrate SPASTC by computing spatial accessibility to hospital beds across the conterminous United States. Our case study shows that SPASTC achieves significant efficiency and scalability making the travel-time computation tens of times faster.more » « lessFree, publicly-accessible full text available May 3, 2025
-
Free, publicly-accessible full text available March 25, 2025
-
Free, publicly-accessible full text available March 25, 2025
-
Abstract We provide data on daily social contact intensity of clusters of people at different types of Points of Interest (POI) by zip code in Florida and California. This data is obtained by aggregating fine-scaled details of interactions of people at the spatial resolution of 10 m, which is then normalized as a social contact index. We also provide the distribution of cluster sizes and average time spent in a cluster by POI type. This data will help researchers perform fine-scaled, privacy-preserving analysis of human interaction patterns to understand the drivers of the COVID-19 epidemic spread and mitigation. Current mobility datasets either provide coarse-level metrics of social distancing, such as radius of gyration at the county or province level, or traffic at a finer scale, neither of which is a direct measure of contacts between people. We use anonymized, de-identified, and privacy-enhanced location-based services (LBS) data from opted-in cell phone apps, suitably reweighted to correct for geographic heterogeneities, and identify clusters of people at non-sensitive public areas to estimate fine-scaled contacts.
-
Abstract The coupling between superconductors and oscillation cycles of light pulses, i.e., lightwave engineering, is an emerging control concept for superconducting quantum electronics. Although progress has been made towards terahertz-driven superconductivity and supercurrents, the interactions able to drive non-equilibrium pairing are still poorly understood, partially due to the lack of measurements of high-order correlation functions. In particular, the sensing of exotic collective modes that would uniquely characterize light-driven superconducting coherence, in a way analogous to the Meissner effect, is very challenging but much needed. Here we report the discovery of parametrically driven superconductivity by light-induced order-parameter collective oscillations in iron-based superconductors. The time-periodic relative phase dynamics between the coupled electron and hole bands drives the transition to a distinct parametric superconducting state out-of-equalibrium. This light-induced emergent coherence is characterized by a unique phase–amplitude collective mode with Floquet-like sidebands at twice the Higgs frequency. We measure non-perturbative, high-order correlations of this parametrically driven superconductivity by separating the terahertz-frequency multidimensional coherent spectra into pump–probe, Higgs mode and bi-Higgs frequency sideband peaks. We find that the higher-order bi-Higgs sidebands dominate above the critical field, which indicates the breakdown of susceptibility perturbative expansion in this parametric quantum matter.more » « less
-
The BICEP/Keck (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the “B-mode” polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor-to-scalar ratio, r, and thus the energy scale of inflation. Having set the most sensitive constraints to-date on r, σ(r) = 0.009 (r0.05 < 0.036, 95% C.L.) using data through the 2018 observing season (“BK18”), the BICEP/Keck program has continued to improve its dataset in the years since. We give a brief overview of the BK program and the “BK18” result before discussing the program’s ongoing efforts, including the deployment and performance of the Keck Array’s successor instrument, BICEP Array, improvements to data processing and internal consistency testing, new techniques such as delensing, and how those will ultimately serve to allow BK reach σ(r) ≲ 0.003 using data through the 2027 observing season.more » « lessFree, publicly-accessible full text available May 29, 2025
-
Time-division multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high-frequency receivers, observing at 150 GHz and 220/270 GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard multichannel electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates time-division multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and cross talk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with time-division/SQUID-based readout for an even larger number of detectors.more » « lessFree, publicly-accessible full text available April 24, 2025
-
null (Ed.)Abstract The Higgs mechanism, i.e., spontaneous symmetry breaking of the quantum vacuum, is a cross-disciplinary principle, universal for understanding dark energy, antimatter and quantum materials, from superconductivity to magnetism. Unlike one-band superconductors (SCs), a conceptually distinct Higgs amplitude mode can arise in multi-band, unconventional superconductors via strong interband Coulomb interaction, but is yet to be accessed. Here we discover such hybrid Higgs mode and demonstrate its quantum control by light in iron-based high-temperature SCs. Using terahertz (THz) two-pulse coherent spectroscopy, we observe a tunable amplitude mode coherent oscillation of the complex order parameter from coupled lower and upper bands. The nonlinear dependence of the hybrid Higgs mode on the THz driving fields is distinct from any known SC results: we observe a large reversible modulation of resonance strength, yet with a persisting mode frequency. Together with quantum kinetic modeling of a hybrid Higgs mechanism, distinct from charge-density fluctuations and without invoking phonons or disorder, our result provides compelling evidence for a light-controlled coupling between the electron and hole amplitude modes assisted by strong interband quantum entanglement. Such light-control of Higgs hybridization can be extended to probe many-body entanglement and hidden symmetries in other complex systems.more » « less