skip to main content

Search for: All records

Creators/Authors contains: "Kang, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. CNNs (Convolutional Neural Networks) are becoming increasingly important for real-time applications, such as image classification in traffic control, visual surveillance, and smart manufacturing. It is challenging, however, to meet timing constraints of image processing tasks using CNNs due to their complexity. Performing dynamic trade-offs between the inference accuracy and time for image data analysis in CNNs is challenging too, since we observe that more complex CNNs that take longer to run even lead to lower accuracy in many cases by evaluating hundreds of CNN models in terms of time and accuracy using two popular data sets, MNIST and CIFAR-10. Tomore »address these challenges, we propose a new approach that (1) generates CNN models and analyzes their average inference time and accuracy for image classification, (2) stores a small subset of the CNNs with monotonic time and accuracy relationships offline, and (3) efficiently selects an effective CNN expected to support the highest possible accuracy among the stored CNNs subject to the remaining time to the deadline at run time. In our extensive evaluation, we verify that the CNNs derived by our approach are more flexible and cost-efficient than two baseline approaches. We verify that our approach can effectively build a compact set of CNNs and efficiently support systematic time vs. accuracy trade-offs, if necessary, to meet the user-specified timing and accuracy requirements. Moreover, the overhead of our approach is little/acceptable in terms of latency and memory consumption.« less
  2. Emerging virtual and augmented reality applications are envisioned to significantly enhance user experiences. An important issue related to user experience is thermal management in smartphones widely adopted for virtual and augmented reality applications. Although smartphone overheating has been reported many times, a systematic measurement and analysis of their thermal behaviors is relatively scarce, especially for virtual and augmented reality applications. To address the issue, we build a temperature measurement and analysis framework for virtual and augmented reality applications using a robot, infrared cameras, and smartphones. Using the framework, we analyze a comprehensive set of data including the battery power consumption,more »smartphone surface temperature, and temperature of key hardware components, such as the battery, CPU, GPU, and WiFi module. When a 360◦ virtual reality video is streamed to a smartphone, the phone surface temperature reaches near 39◦C. Also, the temperature of the phone surface and its main hardware components generally increases till the end of our 20-minute experiments despite thermal control undertaken by smartphones, such as CPU/GPU frequency scaling. Our thermal analysis results of a popular AR game are even more serious: the battery power consumption frequently exceeds the thermal design power by 20–80%, while the peak battery, CPU, GPU, and WiFi module temperature exceeds 45, 70, 70, and 65◦C, respectively« less
  3. Measuring the behavior of redox-active molecules in space and time is crucial for understanding chemical and biological systems and for developing new technologies. Optical schemes are noninvasive and scalable, but usually have a slow response compared to electrical detection methods. Furthermore, many fluorescent molecules for redox detection degrade in brightness over long exposure times. Here, we show that the photoluminescence of “pixel” arrays of monolayer MoS 2 can image spatial and temporal changes in redox molecule concentration. Because of the strong dependence of MoS 2 photoluminescence on doping, changes in the local chemical potential substantially modulate the photoluminescence of MoSmore »2 , with a sensitivity of 0.9 mV / Hz on a 5 μm × 5 μm pixel, corresponding to better than parts-per-hundred changes in redox molecule concentration down to nanomolar concentrations at 100-ms frame rates. This provides a new strategy for visualizing chemical reactions and biomolecules with a two-dimensional material screen.« less
  4. A bstract Charged lepton flavor violation is forbidden in the Standard Model but possible in several new physics scenarios. In many of these models, the radiative decays τ ± → ℓ ± γ ( ℓ = e, μ ) are predicted to have a sizeable probability, making them particularly interesting channels to search at various experiments. An updated search via τ ± → ℓ ± γ using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb − 1 , is reported for charged lepton flavor violation. No significant excess over background predictions from the Standardmore »Model is observed, and the upper limits on the branching fractions, $$ \mathcal{B} $$ B ( τ ± → μ ± γ ) ≤ 4 . 2 × 10 − 8 and $$ \mathcal{B} $$ B ( τ ± → e ± γ ) ≤ 5 . 6 × 10 − 8 , are set at 90% confidence level.« less
    Free, publicly-accessible full text available October 1, 2022
  5. Free, publicly-accessible full text available March 1, 2023
  6. Free, publicly-accessible full text available October 1, 2022
  7. Free, publicly-accessible full text available September 1, 2022
  8. A bstract We measure the branching fractions and CP asymmetries for the singly Cabibbo-suppressed decays D 0 → π + π − η , D 0 → K + K − η , and D 0 → ϕη , using 980 fb − 1 of data from the Belle experiment at the KEKB e + e − collider. We obtain $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({D}^0\to {\pi}^{+}{\pi}^{-}\eta \right)=\left[1.22\pm 0.02\left(\mathrm{stat}\right)\pm 0.02\left(\mathrm{syst}\right)\pm 0.03\left({\mathcal{B}}_{\mathrm{ref}}\right)\right]\times {10}^{-3},\\ {}\mathcal{B}\left({D}^0\to {K}^{+}{K}^{-}\eta \right)=\left[{1.80}_{-0.06}^{+0.07}\left(\mathrm{stat}\right)\pm 0.04\left(\mathrm{syst}\right)\pm 0.05\left({\mathcal{B}}_{\mathrm{ref}}\right)\right]\times {10}^{-4},\\ {}\mathcal{B}\left({D}^0\to \phi \eta \right)=\left[1.84\pm 0.09\left(\mathrm{stat}\right)\pm 0.06\left(\mathrm{syst}\right)\pm 0.05\left({\mathcal{B}}_{\mathrm{ref}}\right)\right]\times {10}^{-4},\end{array}} $$ B D 0 → π + π − η = 1.22 ± 0.02 stat ± 0.02more »syst ± 0.03 B ref × 10 − 3 , B D 0 → K + K − η = 1.80 − 0.06 + 0.07 stat ± 0.04 syst ± 0.05 B ref × 10 − 4 , B D 0 → ϕη = 1.84 ± 0.09 stat ± 0.06 syst ± 0.05 B ref × 10 − 4 , where the third uncertainty ( $$ \mathcal{B} $$ B ref ) is from the uncertainty in the branching fraction of the reference mode D 0 → K − π + η . The color-suppressed decay D 0 → ϕη is observed for the first time, with very high significance. The results for the CP asymmetries are $$ {\displaystyle \begin{array}{c}{A}_{CP}\left({D}^0\ {\pi}^{+}{\pi}^{-}\eta \right)=\left[0.9\pm 1.2\left(\mathrm{stat}\right)\pm 0.5\left(\mathrm{syst}\right)\right]\%,\\ {}{A}_{CP}\left({D}^0\to {K}^{+}{K}^{-}\eta \right)=\left[-1.4\pm 3.3\left(\mathrm{stat}\right)\pm 1.1\left(\mathrm{syst}\right)\right]\%,\\ {} ACP\ \left({D}^0\to \phi \eta \right)=\left[-1.9\pm 4.4\left(\mathrm{stat}\right)\pm 0.6\left(\mathrm{syst}\right)\right]\%.\end{array}} $$ A CP D 0 π + π − η = 0.9 ± 1.2 stat ± 0.5 syst % , A CP D 0 → K + K − η = − 1.4 ± 3.3 stat ± 1.1 syst % , ACP D 0 → ϕη = − 1.9 ± 4.4 stat ± 0.6 syst % . The results for D 0 → π + π − η are a significant improvement over previous results. The branching fraction and A CP results for D 0 → K + K − η , and the ACP result for D 0 → ϕη , are the first such measurements. No evidence for CP violation is found in any of these decays.« less
    Free, publicly-accessible full text available September 1, 2022
  9. Free, publicly-accessible full text available September 1, 2022