skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kang, Min_Je"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A multifaceted Mo:BiVO4(mf‐BVO) photoanode is grown on F‐doped‐SnO2substrates via achemical bath deposition, and the crystal reconstruction process of mf‐BVO is found to boost the charge transport efficiency significantly for photoelectrochemical (PEC) water splitting. The mf‐BVO exhibits columnar grains with an uncommon (121) texture with high‐index facets such as (112), (020), (132), and (204). The texture and high‐index facets facilitate rapid surface melting and grain fusion during thermal annealing, thus leading to crystal reconstructed micron‐sized BVO grains (cr‐BVO). The cr‐BVO has a photocurrent density ≈50 times larger than that of mf‐BVO. The reason is identified as the significantly improved charge transport efficiency resulting from the dopant activation (increased carrier concentration) and bulky grains (fewer defects). Additionally, the cr‐BVO exhibits improved photocorrosion resistance compared to the nanoparticle‐based BVO. After coating the oxygen evolution catalyst, the photocurrent density of cr‐BVO is further increased to 4.4 mA cm−2for water oxidation reaction at 1.23 V versus the reversible hydrogen electrode, maintaining a high and stable faradaic efficiency of over 88% for 24 h. These results demonstrate that crystal reconstruction is a facile and effective pathway to improve the charge transport efficiency, opening a new avenue for developing efficient photoelectrodes for PEC water splitting. 
    more » « less