skip to main content


Search for: All records

Creators/Authors contains: "Kang, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. null (Ed.)
  3. Abstract We present a background model for dark matter searches using an array of NaI(Tl) crystals in the COSINE-100 experiment that is located in the Yangyang underground laboratory. The model includes background contributions from both internal and external sources, including cosmogenic radionuclides and surface $$^{210}$$ 210 Pb contamination. To build the model in the low energy region, with a threshold of 1 keV, we used a depth profile of $$^{210}$$ 210 Pb contamination in the surface of the NaI(Tl) crystals determined in a comparison between measured and simulated spectra. We also considered the effect of the energy scale errors propagated from the statistical uncertainties and the nonlinear detector response at low energies. The 1.7 years COSINE-100 data taken between October 21, 2016 and July 18, 2018 were used for this analysis. Our Monte Carlo simulation provides a non-Gaussian peak around 50 keV originating from beta decays of bulk $$^{210}$$ 210 Pb in a good agreement with the measured background. This model estimates that the activities of bulk $$^{210}$$ 210 Pb and $$^{3}$$ 3 H are dominating the background rate that amounts to an average level of $$2.85\pm 0.15$$ 2.85 ± 0.15  counts/day/keV/kg in the energy region of (1–6) keV, using COSINE-100 data with a total exposure of 97.7 kg $$\cdot $$ · years. 
    more » « less
  4. Abstract

    We report the identification of metastable isomeric states of$$^{228}$$228Ac at 6.28 keV, 6.67 keV and 20.19 keV, with lifetimes of an order of 100 ns. These states are produced by the$$\beta $$β-decay of$$^{228}$$228Ra, a component of the$$^{232}$$232Th decay chain, with$$\beta $$βQ-values of 39.52 keV, 39.13 keV and 25.61 keV, respectively. Due to the low Q-value of$$^{228}$$228Ra as well as the relative abundance of$$^{232}$$232Th and their progeny in low background experiments, these observations potentially impact the low-energy background modeling of dark matter search experiments.

     
    more » « less
  5. Abstract Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p -value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 × 10 48 erg for stripped-envelope supernovae, 2.8 × 10 48 erg for type IIP, and 1.3 × 10 49 erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 10 3 –10 5 ] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  6. Abstract The D-Egg, an acronym for “Dual optical sensors in an Ellipsoid Glass for Gen2,” is one of the optical modules designed for future extensions of the IceCube experiment at the South Pole. The D-Egg has an elongated-sphere shape to maximize the photon-sensitive effective area while maintaining a narrow diameter to reduce the cost and the time needed for drilling of the deployment holes in the glacial ice for the optical modules at depths up to 2700 m. The D-Egg design is utilized for the IceCube Upgrade, the next stage of the IceCube project also known as IceCube-Gen2 Phase 1, where nearly half of the optical sensors to be deployed are D-Eggs. With two 8-inch high-quantum efficiency photomultiplier tubes (PMTs) per module, D-Eggs offer an increased effective area while retaining the successful design of the IceCube digital optical module (DOM). The convolution of the wavelength-dependent effective area and the Cherenkov emission spectrum provides an effective photodetection sensitivity that is 2.8 times larger than that of IceCube DOMs. The signal of each of the two PMTs is digitized using ultra-low-power 14-bit analog-to-digital converters with a sampling frequency of 240 MSPS, enabling a flexible event triggering, as well as seamless and lossless event recording of single-photon signals to multi-photons exceeding 200 photoelectrons within 10 ns. Mass production of D-Eggs has been completed, with 277 out of the 310 D-Eggs produced to be used in the IceCube Upgrade. In this paper, we report the design of the D-Eggs, as well as the sensitivity and the single to multi-photon detection performance of mass-produced D-Eggs measured in a laboratory using the built-in data acquisition system in each D-Egg optical sensor module. 
    more » « less
    Free, publicly-accessible full text available April 1, 2024