Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Benjamin, Paaßen ; Carrie, Demmans Epp (Ed.)One of the areas where Large Language Models (LLMs) show promise is for automated qualitative coding, typically framed as a text classification task in natural language processing (NLP). Their demonstrated ability to leverage in-context learning to operate well even in data-scarce settings poses the question of whether collecting and annotating large-scale data for training qualitative coding models is still beneficial. In this paper, we empirically investigate the performance of LLMs designed for use in prompting-based in-context learning settings, and draw a comparison to models that have been trained using the traditional pretraining--finetuning paradigm with task-specific annotated data, specifically for tasks involving qualitative coding of classroom dialog. Compared to other domains where NLP studies are typically situated, classroom dialog is much more natural and therefore messier. Moreover, tasks in this domain are nuanced and theoretically grounded and require a deep understanding of the conversational context. We provide a comprehensive evaluation across five datasets, including tasks such as talkmove prediction and collaborative problem solving skill identification. Our findings show that task-specific finetuning strongly outperforms in-context learning, showing the continuing need for high-quality annotated training datasets.more » « lessFree, publicly-accessible full text available January 1, 2025
-
Language documentation encompasses translation, typically into the dominant high-resource language in the region where the target language is spoken. To make data accessible to a broader audience, additional translation into other high-resource languages might be needed. Working within a project documenting Kotiria, we explore the extent to which state-of-the-art machine translation (MT) systems can support this second translation – in our case from Portuguese to English. This translation task is challenging for multiple reasons: (1) the data is out-of-domain with respect to the MT system’s training data, (2) much of the data is conversational, (3) existing translations include non-standard and uncommon expressions, often reflecting properties of the documented language, and (4) the data includes borrowings from other regional languages. Despite these challenges, existing MT systems perform at a usable level, though there is still room for improvement. We then conduct a qualitative analysis and suggest ways to improve MT between high-resource languages in a language documentation setting.more » « less
-
Human–computer conversation has long been an interest of artificial intelligence and natural language processing research. Recent years have seen a dramatic improvement in quality for both task-oriented and open-domain dialogue systems, and an increasing amount of research in the area. The goal of this work is threefold: (1) to provide an overview of recent advances in the field of open-domain dialogue, (2) to summarize issues related to ethics, bias, and fairness that the field has identified as well as typical errors of dialogue systems, and (3) to outline important future challenges. We hope that this work will be of interest to both new and experienced researchers in the area.more » « less