skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kao, Chien-Min"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Positronium lifetime imaging (PLI) is a newly demonstrated technique possible with time-of-flight (TOF) positron emission tomography (PET), capable of producing an image reflecting the lifetime of the positron, more precisely ortho-positronium (o-Ps), before annihilation, in addition to the traditional uptake image of the PET tracer. Due to the limited time resolution of TOF-PET systems and the added complexities in physics and statistics, lifetime image reconstruction presents a challenge. Recently, we described a maximum-likelihood approach for PLI by considering only o-Ps. In real-world scenarios, other populations of positrons that exhibit different lifetimes also exist. This paper introduces a novel two-component model aimed at enhancing the accuracy of o-Ps lifetime images. Through simulation studies, we compare this new model with the existing single-component model and demonstrate its superior performance in accurately capturing complex lifetime distributions. 
    more » « less
    Free, publicly-accessible full text available July 15, 2025
  2. The positronium lifetime imaging (PLI) reconstruction is a technique used in time-of-flight (TOF) positron emission tomography (PET) imaging that involves measuring the lifespan of positronium, which is a metastable electron-positron pair that arises when a PET molecule releases a positron, prior to its annihilation. We have previously developed a maximum likelihood (ML) algorithm for PLI reconstruction and demonstrated that it can generate quantitatively accurate lifetime images for a 570 ps (pico-seconds) TOF PET system. In this study, we conducted further investigations into the statistical properties of the algorithm, including the variability of the reconstruction results, the sensitivity of the algorithm to the number of acquired PLI events and its robustness to hyperparameter choices. Our findings indicate that the proposed ML method produces sufficiently stable lifetime images to enable reliable distinction of regions of interest. Moreover, the number of PLI events required to produce quantitatively accurate lifetime images is computationally plausible. These results demonstrate the potential of our ML algorithm for advancing the capabilities of TOF PET imaging. 
    more » « less