skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kao, Yvonne S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is a burgeoning population of new CS teachers who are looking for additional support in their first few years of teaching, particularly around equitable and inclusive pedagogy. At the same time, there are a sizable number of teachers with multiple years of CS teaching experience who are looking for growth opportunities without taking on new courses. To address these needs, we are designing an innovative, equity-focused peer mentorship program for high school CS teachers. Mentors and mentees work together to support the mentee in identifying and achieving goals aligned to three of the CSTA Standards for CS Teachers: equity and inclusion, instructional design, and classroom practice. Mentors are provided with training and participate in a monthly community of practice focused on effective mentoring. The poster will share findings from our first year of implementation as well as examples of the materials we developed to support mentors and mentees. 
    more » « less
  2. null (Ed.)
    As reliance on technology increases in practically every aspect of life, all students deserve the opportunity to learn to think computationally from early in their educational experience. To support the kinds of computer science curriculum and instruction that makes this possible, there is an urgent need to develop and validate computational thinking (CT) assessments for elementary-aged students. We developed the Assessment of Computing for Elementary Students (ACES) to measure the CT concepts of loops and sequences for students in grades 3-5. The ACES includes block-based coding questions as well as non-programming, Bebras-style questions. We conducted cognitive interviews to understand student perspectives while taking the ACES. We piloted the assessment with 57 4th grade students who had completed a CT curriculum. Preliminary analyses indicate acceptable reliability and appropriate difficulty and discrimination among assessment items. The significance of this paper is to present a new CT measure for upper elementary students and to share its intentional development process. 
    more » « less
  3. When creating assessments, computer science educators and researchers must balance items' cognitive complexity and authenticity against scoring efficiency. In this poster, the author reports results from an end-of-course assessment administered to over 500 high school students in an introductory block-based programming course. The poster focuses on three atypical multiple-choice items, in which students had to select all the correct responses. The items were designed to be more cognitively complex than simple multiple choice questions while remaining easy to score. Results show that this type of item was challenging for students but was predictive of their overall performance. 
    more » « less
  4. One of the critical barriers to increasing pre-collegiate computer science course offerings in the U.S. is a lack of qualified computer science teachers. Programs such as TEALS, a teacher preparation program pairing high school teachers with computing professionals to offer CS courses, provide opportunities for in-service teachers to gain experience teaching computer science. However, it is not clear whether the high school teachers develop sufficient pedagogical expertise to sustain high-quality computer science course offerings at their schools. Furthermore, the field of computer science education lacks valid and reliable ways of measuring pedagogical content knowledge (PCK), a construct that describes the knowledge teachers need for effective instruction. In this poster, the authors present these results from the first year of a three-year NSF grant to study how TEALS participation influences novice computer science teachers' PCK: 1) a theoretical framework describing the critical components of CS PCK, 2) the results of the first field test of a CS PCK assessment, including the psychometric properties of the assessment, and 3) a comparison of how teachers performed on the assessment at the beginning and end of their first year of computer science teaching and how they performed relative to their computing professional mentors. 
    more » « less