Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Although neutron star–black hole binaries have been identified through mergers detected in gravitational waves, a pulsar–black hole binary has yet to be detected. While short-period binaries are detectable due to a clear signal in the pulsar’s timing residuals, effects from a long-period binary could be masked by other timing effects, allowing them to go undetected. In particular, a long-period binary measured over a small subset of its orbital period could manifest via time derivatives of the spin frequency incompatible with isolated pulsar properties. We assess the possibility of pulsars having unknown companions in long-period binaries and put constraints on the range of binary properties that may remain undetected in current data, but that may be detectable with further observations. We find that for 35% of canonical pulsars with published higher-order derivatives, the precision of measurements is not enough to confidently reject binarity (period ≳2 kyr), and that a black hole binary companion could not be ruled out for a sample of pulsars without published constraints if the period is >1 kyr. While we find no convincing cases in the literature, we put more stringent limits on orbital period and longitude of periastron for the few pulsars with published higher-order frequency derivatives (
n ≥ 3). We discuss the detectability of candidates and find that a sample pulsar in a 100 yr orbit could be detectable within 5–10 yr. -
Free, publicly-accessible full text available June 1, 2024
-
Abstract The phenomenon of pulsar nulling, observed as the temporary inactivity of a pulsar, remains poorly understood both observationally and theoretically. Most observational studies that quantify nulling employ a variant of Ritchings algorithm, which can suffer significant biases for pulsars where the emission is weak. Using a more robust mixture model method, we study pulsar nulling in a sample of 22 recently discovered pulsars, for which we publish the nulling fractions for the first time. These data clearly demonstrate biases of the former approach and show how an otherwise nonnulling pulsar can be classified as having significant nulls. We show that the population-wide studies that find a positive correlation of nulling with pulsar period/characteristic age can similarly be biased because of the bias in estimating the nulling fraction. We use our probabilistic approach to find the evidence for periodicity in the nulls in a subset of three pulsars in our sample. In addition, we also provide improved timing parameters for 17 of the 22 pulsars that had no prior follow-up.
-
ABSTRACT We present results from a radio survey for variable and transient sources on 15-min time-scales, using the Australian SKA Pathfinder (ASKAP) pilot surveys. The pilot surveys consist of 505 h of observations conducted at around 1 GHz observing frequency, with a total sky coverage of 1476 deg2. Each observation was tracked for approximately 8 – 10 h, with a typical rms sensitivity of ∼30 μJy beam−1 and an angular resolution of ∼12 arcsec. The variability search was conducted within each 8 – 10 h observation on a 15-min time-scale. We detected 38 variable and transient sources. Seven of them are known pulsars, including an eclipsing millisecond pulsar, PSR J2039−5617. Another eight sources are stars, only one of which has been previously identified as a radio star. For the remaining 23 objects, 22 are associated with active galactic nuclei or galaxies (including the five intra-hour variables that have been reported previously), and their variations are caused by discrete, local plasma screens. The remaining source has no multiwavelength counterparts and is therefore yet to be identified. This is the first large-scale radio survey for variables and transient sources on minute time-scales at a sub-mJy sensitivity level. We expect to discover ∼1 highly variable source per day using the same technique on the full ASKAP surveys.more » « lessFree, publicly-accessible full text available June 22, 2024
-
ABSTRACT Radio transient searches using traditional variability metrics struggle to recover sources whose evolution time-scale is significantly longer than the survey cadence. Motivated by the recent observations of slowly evolving radio afterglows at gigahertz frequency, we present the results of a search for radio variables and transients using an alternative matched-filter approach. We designed our matched-filter to recover sources with radio light curves that have a high-significance fit to power-law and smoothly broken power-law functions; light curves following these functions are characteristic of synchrotron transients, including ‘orphan’ gamma-ray burst afterglows, which were the primary targets of our search. Applying this matched-filter approach to data from Variables and Slow Transients Pilot Survey conducted using the Australian SKA Pathfinder, we produced five candidates in our search. Subsequent Australia Telescope Compact Array observations and analysis revealed that: one is likely a synchrotron transient; one is likely a flaring active galactic nucleus, exhibiting a flat-to-steep spectral transition over 4 months; one is associated with a starburst galaxy, with the radio emission originating from either star formation or an underlying slowly evolving transient; and the remaining two are likely extrinsic variables caused by interstellar scintillation. The synchrotron transient, VAST J175036.1–181454, has a multifrequency light curve, peak spectral luminosity, and volumetric rate that is consistent with both an off-axis afterglow and an off-axis tidal disruption event; interpreted as an off-axis afterglow would imply an average inverse beaming factor $\langle f^{-1}_{\text{b}} \rangle = 860^{+1980}_{-710}$, or equivalently, an average jet opening angle of $\langle \theta _{\textrm {j}} \rangle = 3^{+4}_{-1}\,$ deg.
-
Abstract We present the detection of rotationally modulated, circularly polarized radio emission from the T8 brown dwarf WISE J062309.94−045624.6 between 0.9 and 2.0 GHz. We detected this high-proper-motion ultracool dwarf with the Australian SKA Pathfinder in 1.36 GHz imaging data from the Rapid ASKAP Continuum Survey. We observed WISE J062309.94−045624.6 to have a time and frequency averaged Stokes
I flux density of 4.17 ± 0.41 mJy beam−1, with an absolute circular polarization fraction of 66.3% ± 9.0%, and calculated a specific radio luminosity ofL ν ∼ 1014.8erg s−1Hz−1. In follow-up observations with the Australian Telescope Compact Array and MeerKAT we identified a multipeaked pulse structure, used dynamic spectra to place a lower limit ofB > 0.71 kG on the dwarf’s magnetic field, and measured aP = 1.912 ± 0.005 hr periodicity, which we concluded to be due to rotational modulation. The luminosity and period we measured are comparable to those of other ultracool dwarfs observed at radio wavelengths. This implies that future megahertz to gigahertz surveys, with increased cadence and improved sensitivity, are likely to detect similar or later-type dwarfs. Our detection of WISE J062309.94−045624.6 makes this dwarf the coolest and latest-type star observed to produce radio emission. -
Abstract We present the detection of 661 known pulsars observed with the Australian SKA Pathfinder (ASKAP) telescope at 888 MHz as part of the Rapid ASKAP Continuum Survey (RACS). Detections were made through astrometric coincidence and we estimate the false alarm rate of our sample to be ∼0.5%. Using archival data at 400 and 1400 MHz, we estimate the power-law spectral indices for the pulsars in our sample and find that the mean spectral index is −1.78 ± 0.6. However, we also find that a single power law is inadequate for modeling all the observed spectra. With the addition of flux densities between 150 MHz and 3 GHz from various imaging surveys, we find that up to 40% of our sample show deviations from a simple power-law model. Using Stokes
V measurements from the RACS data, we measured the circular polarization fraction for 9% of our sample and find that the mean polarization fraction is ∼10% (consistent between detections and upper limits). Using the dispersion-measure-derived distance, we estimate the pseudo-luminosity of the pulsars and do not find any strong evidence for a correlation with the pulsars’ intrinsic properties. -
Abstract We present a systematic search for radio counterparts of novae using the Australian Square Kilometer Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, which covered the entire sky south of declination $+41^{\circ}$ ( $\sim$ $34000$ square degrees) at a central frequency of 887.5 MHz, the Variables and Slow Transients Pilot Survey, which covered $\sim$ $5000$ square degrees per epoch (887.5 MHz), and other ASKAP pilot surveys, which covered $\sim$ 200–2000 square degrees with 2–12 h integration times. We crossmatched radio sources found in these surveys over a two–year period, from 2019 April to 2021 August, with 440 previously identified optical novae, and found radio counterparts for four novae: V5668 Sgr, V1369 Cen, YZ Ret, and RR Tel. Follow-up observations with the Australian Telescope Compact Array confirm the ejecta thinning across all observed bands with spectral analysis indicative of synchrotron emission in V1369 Cen and YZ Ret. Our light-curve fit with the Hubble Flow model yields a value of $1.65\pm 0.17 \times 10^{-4} \rm \:M_\odot$ for the mass ejected in V1369 Cen. We also derive a peak surface brightness temperature of $250\pm80$ K for YZ Ret. Using Hubble Flow model simulated radio lightcurves for novae, we demonstrate that with a 5 $\sigma$ sensitivity limit of 1.5 mJy in 15-min survey observations, we can detect radio emission up to a distance of 4 kpc if ejecta mass is in the range $10^{-3}\rm \:M_\odot$ , and upto 1 kpc if ejecta mass is in the range $10^{-5}$ – $10^{-3}\rm \:M_\odot$ . Our study highlights ASKAP’s ability to contribute to future radio observations for novae within a distance of 1 kpc hosted on white dwarfs with masses $0.4$ – $1.25\:\rm M_\odot$ , and within a distance of 4 kpc hosted on white dwarfs with masses $0.4$ – $1.0\:\rm M_\odot$ .more » « lessFree, publicly-accessible full text available January 1, 2024
-
Abstract GW170817 is the first binary neutron star (NS) merger detected in gravitational waves (GWs) and photons, and so far remains the only GW event of its class with a definitive electromagnetic counterpart. Radio emission from the structured jet associated with GW170817 has faded below the sensitivity achievable via deep radio observations with the most sensitive radio arrays currently in operation. Hence, we now have the opportunity to probe the radio re-brightening that some models predict, which should emerge at late times from the interaction of the dynamically stripped merger ejecta with the interstellar medium. Here we present the latest results from our deep radio observations of the GW170817 field with the Karl G. Jansky Very Large Array (VLA), 4.5 yr after the merger. Our new data at 3 GHz do not show any compelling evidence for emission in excess to the tail of the jet afterglow (<3.3 μ Jy), confirming our previous results. We thus set new constraints on the dynamical ejecta afterglow models. These constraints favor single-speed ejecta with energies ≲10 50 erg (for an ejecta speed of β 0 = 0.5), or steeper energy–speed distributions of the kilonova ejecta. Our results also suggest larger values of the cold, nonrotating maximum NS mass in equal-mass scenarios. However, without a detection of the dynamical ejecta afterglow, obtaining precise constraints on the NS equation of state remains challenging.more » « less