skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaplan, Lance M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks (DNNs) have been shown to perform well on exclusive, multi-class classification tasks. However, when different classes have similar visual features, it becomes challenging for human annotators to differentiate them. This scenario necessitates the use of composite class labels. In this paper, we propose a novel framework called Hyper-Evidential Neural Network (HENN) that explicitly models predictive uncertainty due to composite class labels in training data in the context of the belief theory called Subjective Logic (SL). By placing a grouped Dirichlet distribution on the class probabilities, we treat predictions of a neural network as parameters of hyper-subjective opinions and learn the network that collects both single and composite evidence leading to these hyper-opinions by a deterministic DNN from data. We introduce a new uncertainty type called vagueness originally designed for hyper-opinions in SL to quantify composite classification uncertainty for DNNs. Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets. The code and datasets are available at: https://github.com/ Hugo101/HyperEvidentialNN. 
    more » « less
  2. Free, publicly-accessible full text available December 15, 2025
  3. Wireless cameras can be used to gather situation awareness information (e.g., humans in distress) in disaster recovery scenarios. However, blindly sending raw video streams from such cameras, to an operations center or controller can be prohibitive in terms of bandwidth. Further, these raw streams could contain either redundant or irrelevant information. Thus, we ask “how do we extract accurate situation awareness information from such camera nodes and send it in a timely manner, back to the operations center?” Towards this, we design ACTION, a framework that (a) detects objects of interest (e.g., humans) from the video streams, (b) combines these streams intelligently to eliminate redundancies and (c) transmits only parts of the feeds that are sufficient in achieving a desired detection accuracy to the controller. ACTION uses small amounts of metadata to determine if the objects from different camera feeds are the same. A resource-aware greedy algorithm is used to select a subset of video feeds that are associated with the same object, so as to provide a desired accuracy, for being sent to the operations center. Our evaluations show that ACTION helps reduce the network usage up to threefold, and yet achieves a high detection accuracy of ≈ 90%. 
    more » « less