skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kapovich, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop the notion of a Kleinian Sphere Packing, a generalization of“crystallographic” (Apollonian-like) sphere packings defined in [A. Kontorovich and K. Nakamura,Geometry and arithmetic of crystallographic sphere packings,Proc. Natl. Acad. Sci. USA 116 2019, 2, 436–441].Unlike crystallographic packings, Kleinian packings exist in all dimensions, as do “superintegral” such.We extend the Arithmeticity Theorem to Kleinian packings, that is, the superintegral ones come from ℚ-arithmetic lattices of simplest type.The same holds for more general objects we call Kleinian Bugs, in which the spheres need not be disjoint but can meet with dihedral angles π/m for finitely many m. We settle two questions from Kontorovich and Nakamura (2019): (i) that the Arithmeticity Theorem is in general false over number fields, and (ii)that integral packings only arise from non-uniform lattices. 
    more » « less