- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Jayarathna, Sampath (1)
-
Jeong, Dong Hyun (1)
-
Ji, Soo Yeon (1)
-
Kardiasmenos, Katrina (1)
-
Perrotti, Anne M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Neurological disabilities cause diverse health and mental challenges, impacting quality of life and imposing financial burdens on both the individuals diagnosed with these conditions and their caregivers. Abnormal brain activity, stemming from malfunctions in the human nervous system, characterizes neurological disorders. Therefore, the early identification of these abnormalities is crucial for devising suitable treatments and interventions aimed at promoting and sustaining quality of life. Electroencephalogram (EEG), a non-invasive method for monitoring brain activity, is frequently employed to detect abnormal brain activity in neurological and mental disorders. This study introduces an approach that extends the understanding and identification of neurological disabilities by integrating feature extraction, machine learning, and visual analysis based on EEG signals collected from individuals with neurological and mental disorders. The classification performance of four feature approaches—EEG frequency band, raw data, power spectral density, and wavelet transform—is assessed using machine learning techniques to evaluate their capability to differentiate neurological disabilities in short EEG segmentations (one second and two seconds). In detail, the classification analysis is conducted under two conditions: single-channel-based classification and region-based classification. While a clear demarcation between normal (healthy) and abnormal (neurological disabilities) EEG metrics may not be evident, their similarities and distinctions are observed through visualization, employing wavelet features. Notably, the frontal brain region (frontal lobe) emerges as a crucial area for distinguishing abnormalities among different brain regions. Also, the integration of wavelet features and visual analysis proves effective in identifying and understanding neurological disabilities.more » « less
An official website of the United States government
