skip to main content


Search for: All records

Creators/Authors contains: "Karentzos, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Abstract A study of the charge conjugation and parity ( $$\textit{CP}$$ CP ) properties of the interaction between the Higgs boson and $$\tau $$ τ -leptons is presented. The study is based on a measurement of $$\textit{CP}$$ CP -sensitive angular observables defined by the visible decay products of $$\tau $$ τ -leptons produced in Higgs boson decays. The analysis uses 139 fb $$^{-1}$$ - 1 of proton–proton collision data recorded at a centre-of-mass energy of $$\sqrt{s}= 13$$ s = 13  TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $$\textit{CP}$$ CP -violating interactions between the Higgs boson and $$\tau $$ τ -leptons are described by a single mixing angle parameter $$\phi _{\tau }$$ ϕ τ in the generalised Yukawa interaction. Without constraining the $$H\rightarrow \tau \tau $$ H → τ τ signal strength to its expected value under the Standard Model hypothesis, the mixing angle $$\phi _{\tau }$$ ϕ τ is measured to be $$9^{\circ } \pm 16^{\circ }$$ 9 ∘ ± 16 ∘ , with an expected value of $$0^{\circ } \pm 28^{\circ }$$ 0 ∘ ± 28 ∘ at the 68% confidence level. The pure $$\textit{CP}$$ CP -odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. A bstract A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton–proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb − 1 . The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson’s mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. A bstract A direct search for Higgs bosons produced via vector-boson fusion and subsequently decaying into invisible particles is reported. The analysis uses 139 fb − 1 of pp collision data at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV recorded by the ATLAS detector at the LHC. The observed numbers of events are found to be in agreement with the background expectation from Standard Model processes. For a scalar Higgs boson with a mass of 125 GeV and a Standard Model production cross section, an observed upper limit of 0 . 145 is placed on the branching fraction of its decay into invisible particles at 95% confidence level, with an expected limit of 0 . 103. These results are interpreted in the context of models where the Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross section of weakly interacting massive particles and nucleons. Invisible decays of additional scalar bosons with masses from 50 GeV to 2 TeV are also studied, and the derived upper limits on the cross section times branching fraction decrease with increasing mass from 1 . 0 pb for a scalar boson mass of 50 GeV to 0 . 1 pb at a mass of 2 TeV. 
    more » « less
  6. Abstract A search for the Higgs boson decaying into a pair of charm quarks is presented. The analysis uses proton–proton collisions to target the production of a Higgs boson in association with a leptonically decaying W or Z boson. The dataset delivered by the LHC at a centre-of-mass energy of "Equation missing" and recorded by the ATLAS detector corresponds to an integrated luminosity of 139  $$\text{ fb}^{-1}$$ fb - 1 . Flavour-tagging algorithms are used to identify jets originating from the hadronisation of charm quarks. The analysis method is validated with the simultaneous measurement of WW ,  WZ and ZZ production, with observed (expected) significances of 2.6 (2.2) standard deviations above the background-only prediction for the $$(W/Z)Z(\rightarrow c{\bar{c}})$$ ( W / Z ) Z ( → c c ¯ ) process and 3.8 (4.6) standard deviations for the $$(W/Z)W(\rightarrow cq)$$ ( W / Z ) W ( → c q ) process. The $$(W/Z)H(\rightarrow c {\bar{c}})$$ ( W / Z ) H ( → c c ¯ ) search yields an observed (expected) upper limit of 26 (31) times the predicted Standard Model cross-section times branching fraction for a Higgs boson with a mass of "Equation missing" , corresponding to an observed (expected) constraint on the charm Yukawa coupling modifier $$|\kappa _c| < 8.5~(12.4)$$ | κ c | < 8.5 ( 12.4 ) , at the 95% confidence level. A combination with the ATLAS $$(W/Z)H, H\rightarrow b{\bar{b}}$$ ( W / Z ) H , H → b b ¯ analysis is performed, allowing the ratio $$\kappa _c / \kappa _b$$ κ c / κ b to be constrained to less than 4.5 at the 95% confidence level, smaller than the ratio of the b- and c-quark masses, and therefore determines the Higgs-charm coupling to be weaker than the Higgs-bottom coupling at the 95% confidence level. 
    more » « less
  7. null (Ed.)
    Two additions impacting tables 3 and 4 in ref. [1] are presented in the following. No significant impact is found for other results or figures in ref. [1]. 
    more » « less
  8. null (Ed.)