skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Karimi, Vahid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT When arranged in a metasurface, the collective enhancement of field interactions within scattering elements enables precise control over the incident light phase and amplitude. In this work, we analyze collective multipolar resonances in metasurfaces that arise from the spatially extended nature of electromagnetic interactions within these structures, with particular emphasis on MXene metasurfaces. This collective scattering leads to unique and tunable resonance behaviors that reach beyond the simple dipolar approximations, thus enabling advanced manipulation of light at subwavelength scales. We also explore resonances in the scatterers and metasurfaces made of different materials, categorizing them into lossy materials, including transition metal dichalcogenides and conventional metals, and high‐refractive‐index materials, such as silicon. We observe the excitation of MXene multipolar resonances across the visible‐ and infrared‐wavelength spectra and demonstrate their control through the design of scattering elements of the metasurface. We show that periodic lattice arrays support strong localized resonances through the collective response of individual nanoresonators and that one can control multipolar resonances by engineering metasurface nanoresonators and their distribution. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026