skip to main content


Search for: All records

Creators/Authors contains: "Karimineghlani, Parvin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dissociation energy of dynamic bonds in thermoresponsive phase‐change salogels is explored using rheology and dynamic light scattering (DLS). The salogels are formed by polyvinyl alcohol (PVA) reversibly crosslinked by hydrogen‐bonding amine‐terminated molecules in an inorganic phase‐change material—lithium nitrate trihydrate (LNH) salt—as a solvent. The crosslinker geometry (linear vs branched) has a strong effect on both the gelation temperature (Tgel) and the crosslinker to polymer ratio at which the gelation occurs. Due to their higher functionality, dendritic crosslinkers are more efficient gelators as compared to their linear counterparts, inducing PVA gelation at a lower concentration of a crosslinker and resulting in salogels with higherTgel. Both stress relaxation and DLS data can be fitted by the exponential functions with temperature‐independent exponents of ≈0.5 and 2, respectively. For the first time, it is reported that the crosslinker dissociation activation energy determined from the rheological stress relaxation time and DLS slow mode decay time are in very good agreement, comprising ≈130–140 kJ mol−1for salogels with both linear and dendritic crosslinkers.

     
    more » « less