Rice paddies are one of the major sources of anthropogenic methane (CH4) emissions. The alternate wetting and drying (AWD) irrigation management has been shown to reduce CH4emissions and total global warming potential (GWP) (CH4and nitrous oxide [N2O]). However, there is limited information about utilizing AWD management to reduce greenhouse gas (GHG) emissions from commercial‐scale continuous rice fields. This study was conducted for five consecutive growing seasons (2015–2019) on a pair of adjacent fields in a commercial farm in Arkansas under long‐term continuous rice rotation irrigated with either continuously flooded (CF) or AWD conditions. The cumulative CH4emissions in the growing season across the two fields and 5 years ranged from 41 to 123 kg CH4‐C ha−1for CF and 1 to 73 kg CH4‐C ha−1for AWD. On average, AWD reduced CH4emissions by 73% relative to CH4emissions in CF fields. Compared to N2O emissions, CH4emissions dominated the GWP with an average contribution of 91% in both irrigation treatments. There was no significant variation in grain yield (7.3–11.9 Mg ha−1) or growing season N2O emissions (−0.02 to 0.51 kg N2O‐N ha−1) between the irrigation treatments. The yield‐scaled GWP was 368 and 173 kg CO2eq. Mg−1season−1for CF and AWD, respectively, showing the feasibility of AWD on a commercial farm to reduce the total GHG emissions while sustaining grain yield. Seasonal variations of GHG emissions observed within fields showed total GHG emissions were predominantly influenced by weather (precipitation) and crop and irrigation management. The influence of air temperature and floodwater heights on GHG emissions had high degree of variability among years and fields. These findings demonstrate that the use of multiyear GHG emission datasets could better capture variability of GHG emissions associated with rice production and could improve field verification of GHG emission models and scaling factors for commercial rice farms.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Wen, Feng (Ed.)Background Since 1999, West Nile virus (WNV) has moved rapidly across the United States, resulting in tens of thousands of human cases. Both the number of human cases and the minimum infection rate (MIR) in vector mosquitoes vary across time and space and are driven by numerous abiotic and biotic forces, ranging from differences in microclimates to socio-demographic factors. Because the interactions among these multiple factors affect the locally variable risk of WNV illness, it has been especially difficult to model human disease risk across varying spatial and temporal scales. Cook and DuPage Counties, comprising the city of Chicago and surrounding suburbs, experience some of the highest numbers of human neuroinvasive cases of WNV in the United States. Despite active mosquito control efforts, there is consistent annual WNV presence, resulting in more than 285 confirmed WNV human cases and 20 deaths from the years 2014–2018 in Cook County alone. Methods A previous Chicago-area WNV model identified the fifty-five most high and low risk locations in the Northwest Mosquito Abatement District (NWMAD), an enclave ¼ the size of the combined Cook and DuPage county area. In these locations, human WNV risk was stratified by model performance, as indicated by differences in studentized residuals. Within these areas, an additional two-years of field collections and data processing was added to a 12-year WNV dataset that includes human cases, MIR, vector abundance, and land-use, historical climate, and socio-economic and demographic variables, and was assessed by an ultra-fine-scale (1 km spatial x 1 week temporal resolution) multivariate logistic regression model. Results Multivariate statistical methods applied to the ultra-fine-scale model identified fewer explanatory variables while improving upon the fit of the previous model. Beyond MIR and climatic factors, efforts to acquire additional covariates only slightly improved model predictive performance. Conclusions These results suggest human WNV illness in the Chicago area may be associated with fewer, but increasingly critical, key variables at finer scales. Given limited resources, these findings suggest large variations in model performance occur, depending on covariate availability, and provide guidance in variable selection for optimal WNV human illness modeling.more » « less
-
Free, publicly-accessible full text available May 1, 2024
-
Abstract We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star–black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order 1051–1057erg for models with central GW frequencies in the range 70–3560 Hz. At the sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB.
Free, publicly-accessible full text available September 28, 2024 -
Abstract The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org . The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.more » « lessFree, publicly-accessible full text available July 28, 2024
-
Abstract We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H ( z ), including its current value, the Hubble constant H 0 . Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H ( z ). The source mass distribution displays a peak around 34 M ⊙ , followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H ( z ) measurement, yielding H 0 = 68 − 8 + 12 km s − 1 Mpc − 1 (68% credible interval) when combined with the H 0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H 0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+ , statistically marginalizing over the redshifts of each event’s potential hosts. Assuming a fixed BBH population, we estimate a value of H 0 = 68 − 6 + 8 km s − 1 Mpc − 1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H 0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H 0 ) is the well-localized event GW190814.more » « lessFree, publicly-accessible full text available June 1, 2024