skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Karp, ATyler"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Plant leaf waxes and their isotopic composition are important tracers of ecological, environmental, and climate variability, with strong preservation potential in sedimentary archives. However, they represent an integrated, and often complicated, signal of vegetation and hydrology within a watershed. Here, we report a new approach for examining complex mixtures of n-alkanes in sediments and their isotope values: non-negative matrix factorization (NMF). NMF identifies the endmembers in a mixture from the integrated n-alkane data and provides quantitative information on the relative importance of those endmembers across samples. We apply this approach to a synthetic dataset and two previously published datasets to illustrate its uses. Our application of NMF to re-analyse previously published data reveals new insights into past climate and ecological change. We demonstrate that NMF allows a user to 1) identify potential mixing problems, 2) evaluate which specific compounds in a mixture carry the isotope signal that can best address a given scientific objective, 3) determine compound concentrations after excluding contributions from particular endmember sources, and 4) calculate isotope values of different sources. NMF provides a quantitative approach for evaluating the influence of endmember mixing on molecular concentrations and isotope values within a dataset. The re-analysis of two published datasets reveals new quantitative insight into Holocene Arctic climate and Neogene vegetation change. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026