skip to main content

Search for: All records

Creators/Authors contains: "Karpatne, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes a physics-guided recurrent neural network model (PGRNN) that combines RNNs and physics-based models to leverage their complementary strengths and improve the modeling of physical processes. Specifically, we show that a PGRNN can improve prediction accuracy over that of physical models, while generating outputs consistent with physical laws, and achieving good generalizability. Standard RNNs, even when producing superior prediction accuracy, often produce physically inconsistent results and lack generalizability. We further enhance this approach by using a pre-training method that leverages the simulated data from a physics-based model to address the scarcity of observed data. Although we present andmore »evaluate this methodology in the context of modeling the dynamics of temperature in lakes, it is applicable more widely to a range of scientific and engineering disciplines where mechanistic (also known as process-based) models are used, e.g., power engineering, climate science, materials science, computational chemistry, and biomedicine.« less
  2. The massive surge in the amount of observational field data demands richer and more meaningful collab- oration between data scientists and geoscientists. This document was written by members of the Working Group on Case Studies of the NSF-funded RCN on Intelli- gent Systems Research To Support Geosciences (IS-GEO, https://is-geo.org/) to describe our vision to build and enhance such collaboration through the use of specially- designed benchmark datasets. Benchmark datasets serve as summary descriptions of problem areas, providing a simple interface between disciplines without requiring extensive background knowledge. Benchmark data intend to address a number of overarching goals. First, they aremore »concrete, identifiable, and public, which results in a natural coordination of research efforts across multiple disciplines and institutions. Second, they provide multi- fold opportunities for objective comparison of various algorithms in terms of computational costs, accuracy, utility and other measurable standards, to address a particular question in geoscience. Third, as materials for education, the benchmark data cultivate future human capital and interest in geoscience problems and data science methods. Finally, a concerted effort to produce and publish benchmarks has the potential to spur the development of new data science methods, while provid- ing deeper insights into many fundamental problems in modern geosciences. That is, similarly to the critical role the genomic and molecular biology data archives serve in facilitating the field of bioinformatics, we expect that the proposed geosciences data repository will serve as “catalysts” for the new discicpline of geoinformatics. We describe specifications of a high quality geoscience bench- mark dataset and discuss some of our first benchmark efforts. We invite the Climate Informatics community to join us in creating additional benchmarks that aim to address important climate science problems.« less