The production ofandmesons in lead-lead (Pb-Pb) and proton-proton () collisions is studied in their dimuon decay channel using the CMS detector at the LHC. Themeson is observed for the first time in Pb-Pb collisions, with a significance above 5 standard deviations. The ratios of yields measured in Pb-Pb andcollisions are reported for both theandmesons, as functions of transverse momentum and Pb-Pb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression ofyields in Pb-Pb collisions. This suppression increases from peripheral to central Pb-Pb collisions. Furthermore, the suppression is stronger formesons compared tomesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the,,, andmesons.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
© 2024 CERN, for the CMS Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
A bstract A search for the central exclusive production of top quark-antiquark pairs (
) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb$$ \textrm{t}\overline{\textrm{t}} $$ − 1. The decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%.$$ \textrm{t}\overline{\textrm{t}} $$ Free, publicly-accessible full text available June 1, 2025 -
A bstract A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb
− 1of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ( ) pair, or a light-flavor quark-antiquark ($$ \textrm{t}\overline{\textrm{t}} $$ ) pair and a virtual or on-shell W boson. The main backgrounds,$$ \textrm{q}\overline{\textrm{q}} $$ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a$$ \textrm{t}\overline{\textrm{t}} $$ pair (a$$ \textrm{t}\overline{\textrm{t}} $$ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV.$$ \textrm{q}\overline{\textrm{q}} $$ -
A bstract A search for a charged Higgs boson H
± decaying into a heavy neutral Higgs boson H and a W boson is presented. The analysis targets the H decay into a pair of tau leptons with at least one of them decaying hadronically and with an additional electron or muon present in the event. The search is based on proton-proton collision data recorded by the CMS experiment during 2016–2018 at = 13 TeV, corresponding to an integrated luminosity of 138 fb$$ \sqrt{s} $$ − 1. The data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the product of the cross section and branching fraction for an H± in the mass range of 300–700 GeV, assuming an H with a mass of 200 GeV. The observed limits range from 0.085 pb for an H± mass of 300 Ge V to 0.019 pb for a mass of 700 GeV. These are the first limits on H± production in the H± → HW± decay channel at the LHC.