Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
Sieler, Michael J; Al-Samarrie, Colleen E; Kasschau, Kristin D; Varga, Zoltan M; Kent, Michael L; Sharpton, Thomas J(
, Animal Microbiome)
AbstractBackground
Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome’s important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan.
Results
Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen,Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds toM. chelonaeexposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected byM. chelonae.
Conclusions
Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.
Combrink, Leigh; Humphreys, Ian R.; Washburn, Quinn; Arnold, Holly K.; Stagaman, Keaton; Kasschau, Kristin D.; Jolles, Anna E.; Beechler, Brianna R.; Sharpton, Thomas J.(
, Frontiers in Microbiology)
Extensive research in well-studied animal models underscores the importance of commensal gastrointestinal (gut) microbes to animal physiology. Gut microbes have been shown to impact dietary digestion, mediate infection, and even modify behavior and cognition. Given the large physiological and pathophysiological contribution microbes provide their host, it is reasonable to assume that the vertebrate gut microbiome may also impact the fitness, health and ecology of wildlife. In accordance with this expectation, an increasing number of investigations have considered the role of the gut microbiome in wildlife ecology, health, and conservation. To help promote the development of this nascent field, we need to dissolve the technical barriers prohibitive to performing wildlife microbiome research. The present review discusses the 16S rRNA gene microbiome research landscape, clarifying best practices in microbiome data generation and analysis, with particular emphasis on unique situations that arise during wildlife investigations. Special consideration is given to topics relevant for microbiome wildlife research from sample collection to molecular techniques for data generation, to data analysis strategies. Our hope is that this article not only calls for greater integration of microbiome analyses into wildlife ecology and health studies but provides researchers with the technical framework needed to successfully conduct such investigations.
Szule, Joseph A.; Curtis, Lawrence R.; Sharpton, Thomas J.; Löhr, Christiane V.; Brander, Susanne M.; Harper, Stacey L.; Pennington, Jamie M.; Hutton, Sara J.; Sieler, Michael J.; Kasschau, Kristin D.(
, Frontiers in Water)
Drinking water is one of numerous sources of human exposure to microscale and nanoscale plastic particles. Here, using a mouse model, we tested enteric and hepatic cellular responses to nanoplastic ingestion. At 1.5 or 25.5 h after an oral dose of 70 mg polystyrene nanospheres (PSNS)/kg (nominal diameters of 20 and 200 nm) in aqueous suspension female mice exhibit no overt signs of toxicity. Routine histopathology on small intestine and liver reveals no acute toxicity. Immunohistochemistry detects an increase in the number of enterocytes with cleaved caspase-3 (active form) after PSNS exposure ( p ≤ 0.05) indicating progression toward lytic cell death via a proinflammatory pathway. This is not evident in liver after PSNS exposure. Transmission electron microscopy detects lytic cell death in enterocytes at 25.5 h after 200 nm PSNS exposure. Putative endosomes in liver appear to sequester 20 and 200 nm particles 25.5 h after exposure. Both 20 and 200 nm PSNS appear in putative perinuclear autolysosomes 25.5 h after treatment. No significant changes in gene expression in the small intestine or liver 25.5 h were observed after dosing, but there was a trend toward altered expression of cyp1b1 in the liver. Analysis of the fecal microbiome shows loss of diversity after exposure to both 20 and 200 nm particles after 25.5 h. Taken together, these results suggest risk from ingestion of nanoscale plastic particles from drinking water, which deserves systematic investigation.
Schuster, Corbin J.; Leong, Connor; Kasschau, Kristin D.; Sharpton, Thomas J.; Kent, Michael L.(
, Journal of Fish Diseases)
Abstract
The intestinal nematodePseudocapillaria tomentosain zebrafish (Danio rerio) causes profound intestinal lesions, emaciation and death and is a promoter of a common intestinal cancer in zebrafish. This nematode has been detected in zebrafish from about 15% of the laboratories. Adult worms are readily detected about 3 weeks after exposure by either histology or wet mount preparations of the intestine, and larval worms are inconsistently observed in fish before this time. A quantitative PCR (qPCR) test was recently developed to detect the worm in fish and water, and here we determined that the test on zebrafish intestines was effective for earlier detection. Four lines of zebrafish (AB, TU, 5D and Casper) were experimentally infected and evaluated by wet mounts and qPCR at 8, 15‐, 22‐, 31‐ and 44‐day post‐exposure (dpe). At the first two time points, only 8% of the wet mounts from exposed fish were identified as infected, while the same intestines screened by qPCR showed 78% positivity, with low and consistent cycle threshold (Ct) values at these times. Wet mounts at later time points showed a high prevalence of infection, but this was still surpassed by qPCR.
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.