Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The first successful detection of gravitational waves by ground-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), marked a breakthrough in our comprehension of the Universe. However, due to the unprecedented sensitivity required to make such observations, gravitational-wave detectors also capture disruptive noise sources called glitches, which can potentially be confused for or mask gravitational-wave signals. To address this problem, a community-science project, Gravity Spy, incorporates human insight and machine learning to classify glitches in LIGO data. The machine-learning classifier, integrated into the project since 2017, has evolved over time to accommodate increasing numbers of glitch classes. Despite its success, limitations have arisen in the ongoing LIGO fourth observing run (O4) due to the architecture's simplicity, which led to poor generalization and inability to handle multi-time window inputs effectively. We propose an advanced classifier for O4 glitches. Using data from previous observing runs, we evaluate different fusion strategies for multi-time window inputs, using label smoothing to counter noisy labels, and enhancing interpretability through attention module-generated weights. Our new O4 classifier shows improved performance, and will enhance glitch classification, aiding in the ongoing exploration of gravitational-wave phenomena.more » « lessFree, publicly-accessible full text available July 29, 2026
-
We explore the bi-directional relationship between human and machine learning in citizen science. Theoretically, the study draws on the zone of proximal development (ZPD) concept, which allows us to describe AI augmentation of human learning, human augmentation of machine learning, and how tasks can be designed to facilitate co-learning. The study takes a design-science approach to explore the design, deployment, and evaluations of the Gravity Spy citizen science project. The findings highlight the challenges and opportunities of co-learning, where both humans and machines contribute to each other’s learning and capabilities. The study takes its point of departure in the literature on co-learning and develops a framework for designing projects where humans and machines mutually enhance each other’s learning. The research contributes to the existing literature by developing a dynamic approach to human-AI augmentation, by emphasizing that the ZPD supports ongoing learning for volunteers and keeps machine learning aligned with evolving data. The approach offers potential benefits for project scalability, participant engagement, and automation considerations while acknowledging the importance of tutorials, community access, and expert involvement in supporting learning.more » « less
-
Abstract The relationship of human brain structure to cognitive function is complex, and how this relationship differs between childhood and adulthood is poorly understood. One strong hypothesis suggests the cognitive function of Fluid Intelligence (Gf) is dependent on prefrontal cortex and parietal cortex. In this work, we developed a novel graph convolutional neural networks (gCNNs) for the analysis of localized anatomic shape and prediction of Gf. Morphologic information of the cortical ribbons and subcortical structures was extracted from T1-weighted MRIs within two independent cohorts, the Adolescent Brain Cognitive Development Study (ABCD; age: 9.93 ± 0.62 years) of children and the Human Connectome Project (HCP; age: 28.81 ± 3.70 years). Prediction combining cortical and subcortical surfaces together yielded the highest accuracy of Gf for both ABCD (R = 0.314) and HCP datasets (R = 0.454), outperforming the state-of-the-art prediction of Gf from any other brain measures in the literature. Across both datasets, the morphology of the amygdala, hippocampus, and nucleus accumbens, along with temporal, parietal and cingulate cortex consistently drove the prediction of Gf, suggesting a significant reframing of the relationship between brain morphology and Gf to include systems involved with reward/aversion processing, judgment and decision-making, motivation, and emotion.more » « less
-
X-ray fluorescence (XRF) spectroscopy is a common technique in the field of heritage science. However, data processing and data interpretation remain a challenge as they are time consuming and often require a priori knowledge of the composition of the materials present in the analyzed objects. For this reason, we developed an open-source, unsupervised dictionary learning algorithm reducing the complexity of large datasets containing 10s of thousands of spectra and identifying patterns. The algorithm runs in Julia, a programming language that allows for faster data processing compared to Python and R. This approach quickly reduces the number of variables and creates correlated elemental maps, characteristic for pigments containing various elements or for pigment mixtures. This alternative approach creates an overcomplete dictionary which is learned from the input data itself, therefore reducing the a priori user knowledge. The feasibility of this method was first confirmed by applying it to a mock-up board containing various known pigment mixtures. The algorithm was then applied to a macro XRF (MA-XRF) data set obtained on an 18th century Mexican painting, and positively identified smalt (pigment characterized by the co-occurrence of cobalt, arsenic, bismuth, nickel, and potassium), mixtures of vermilion and lead white, and two complex conservation materials/interventions. Moreover, the algorithm identified correlated elements that were not identified using the traditional elemental maps approach without image processing. This approach proved very useful as it yielded the same conclusions as the traditional elemental maps approach followed by elemental maps comparison but with a much faster data processing time. Furthermore, no image processing or user manipulation was required to understand elemental correlation. This open-source, open-access, and thus freely available code running in a platform allowing faster processing and larger data sets represents a useful resource to understand better the pigments and mixtures used in historical paintings and their possible various conservation campaigns.more » « less
An official website of the United States government
