The drag coefficient Cd for a rigid and uniformly distributed rod canopy covering a sloping channel following the instantaneous collapse of a dam was examined using flume experiments. The measurements included space x and time t high resolution images of the water surface h(x, t) for multiple channel bed slopes So and water depths behind the dam Ho along with drag estimates provided by sequential load cells. Using these data, an analysis of the Saint-Venant equation (SVE) for the front speed was conducted using the diffusive wave approximation. An inferred Cd=0.4 from the h(x, t) data near the advancing front region, also confirmed by load cell measurements, is much reduced relative to its independently measured steady-uniform flow case. This finding suggests that drag reduction mechanisms associated with transients and flow disturbances are more likely to play a dominant role when compared to conventional sheltering or blocking effects on Cd examined in uniform flow. The increased air volume entrained into the advancing wave front region as determined from an inflow–outflow volume balance partly explains the Cd reduction from unity.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2025
-
Urban surface and near-surface air temperatures are known to be often higher than their rural counterparts, a phenomenon now labeled as the urban heat island effect. However, whether the elevated urban temperatures are more persistent than rural temperatures at timescales commensurate to heat waves has not been addressed despite its importance for human health. Combining numerical simulations by a global climate model with a surface energy balance theory, it is demonstrated here that urban surface and near-surface air temperatures are significantly more persistent than their rural counterparts in cities dominated by impervious materials with large thermal inertia. Further use of these materials will result in even stronger urban temperature persistence, especially for tropical cities. The present findings help pinpoint mitigation strategies that can simultaneously ameliorate the larger magnitude and stronger persistence of urban temperatures.
Free, publicly-accessible full text available April 12, 2025 -
Abstract The behavior of suspended particles in turbulent flows is a recalcitrant problem spanning wide‐ranging fields including geomorphology, hydrology, and dispersion of particulate matter in the atmosphere. One key mechanism underlying particle suspension is the difference between particle settling velocity (
w s ) in turbulence and its still water counterpart (w so ). This difference is explored here for a range of particle‐to‐fluid densities (1–10) and particle diameter to Kolmogorov micro‐eddy sizes (0.1–10). Conventional models of particle fluxes that equatew s tow so result in eddy diffusivities and turbulent Schmidt numbers contradictory to laboratory experiments. Incorporating virtual mass and Basset history forces resolves these inconsistencies, providing clarity as to whyw s /w so is sub‐unity for the aforementioned conditions. The proposed formulation can be imminently used to model particle settling in turbulence, especially when sediment distribution outcomes over extended time scales far surpassing turbulence time scales are sought.Free, publicly-accessible full text available November 28, 2024 -
Free, publicly-accessible full text available December 1, 2024
-
Abstract How convective boundary‐layer (CBL) processes modify fluxes of sensible (
SH ) and latent (LH ) heat and CO2(F c ) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that whileSH in the ASL decreases linearly with height regardless of soil moisture conditions,LH andF c decrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimatedLH . The non‐closure does not imply thatF c is always underestimated;F c can be overestimated over dry soils despite the non‐closure issue.Free, publicly-accessible full text available January 16, 2025 -
Abstract. Conventional and recently developed approaches for estimating turbulent scalar fluxes under stable atmospheric conditions are evaluated, with a focus on gases for which fast sensors are not readily available. First, the relaxed eddy accumulation (REA) classical approach and a recently proposed mixing length parameterization, labeled A22, are tested against eddy-covariance computations. Using high-frequency measurements collected from two contrasting sites (the frozen tundra near Utqiaġvik, Alaska, and a sparsely vegetated grassland in Wendell, Idaho, during winter), it is shown that the REA and A22 models outperform the conventional Monin–Obukhov similarity theory (MOST) utilized widely to infer fluxes from mean gradients. Second, scenarios where slow trace gas sensors are the only viable option in field measurements are investigated using digital filtering applied to fast-response sensors to simulate their slow-response counterparts. With a filtered scalar signal, the observed filtered eddy-covariance fluxes are referred to here as large-eddy-covariance (LEC) fluxes. A virtual eddy accumulation (VEA) approach, akin to the REA model but not requiring a mechanical apparatus to separate the gas flows, is also formulated and tested. A22 outperforms VEA and LEC in predicting the observed unfiltered (total) eddy-covariance (EC) fluxes; however, VEA can still capture the LEC fluxes well. This finding motivates the introduction of a sensor response time correction into the VEA formulation to offset the effect of sensor filtering on the underestimated net averaged fluxes. The only needed parameter for this correction is the mean velocity at the instrument height, a surrogate of the advective timescale. The VEA approach is very suitable and simple to use with gas sensors of intermediate speed (∼ 0.5 to 1 Hz) and with conventional open- or closed-path setups.
Free, publicly-accessible full text available January 1, 2025 -
Free, publicly-accessible full text available October 1, 2024
-
Free, publicly-accessible full text available November 1, 2024
-
In plants, the delivery of the products of photosynthesis is achieved through a hydraulic system labeled as phloem. This semi-permeable plant tissue consists of living cells that contract and expand in response to fluid pressure and flow velocity fluctuations. The Münch pressure flow theory, which is based on osmosis providing the necessary pressure gradient to drive the mass flow of carbohydrates, is currently the most accepted model for such sucrose transport. When this hypothesis is combined with the conservation of fluid mass and momentum as well as sucrose mass, many simplifications must be invoked to mathematically close the problem and to resolve the flow. This study revisits such osmotically driven flows by developing a new two-dimensional numerical model in cylindrical coordinates for an elastic membrane and a concentration-dependent viscosity. It is demonstrated that the interaction between the hydrodynamic and externally supplied geometrical characteristic of the phloem has a significant effect on the front speed of sucrose transport. These results offer a novel perspective about the evolutionary adaptation of plant hydraulic traits to optimize phloem soluble compounds transport efficiency.more » « less