- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Katz, Hilary_R (2)
-
Hamlet, Christina_L (1)
-
Stanchak, Kathryn_E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis The central pattern generator (CPG) in anguilliform swimming has served as a model for examining the neural basis of locomotion. This system has been particularly valuable for the development of mathematical models. As our biological understanding of the neural basis of locomotion has expanded, so too have these models. Recently, there have been significant advancements in our understanding of the critical role that mechanosensory feedback plays in robust locomotion. This work has led to a push in the field of mathematical modeling to incorporate mechanosensory feedback into CPG models. In this perspective piece, we review advances in the development of these models and discuss how newer complex models can support biological investigation. We highlight lamprey spinal cord regeneration as an area that can both inform these models and benefit from them.more » « less
-
Stanchak, Kathryn_E; Katz, Hilary_R (, Integrative And Comparative Biology)Synopsis Mechanosensory information is a critical component of organismal movement control systems. Understanding the role mechanosensation plays in modulating organismal behavior requires inherently multidisciplinary research programs that reach across biological scales. Recently, there have been rapid advances in discerning how mechanosensory mechanisms are integrated into neural control systems and the impact mechanosensory information has on behavior. Thus, the Symposium “The Role of Mechanosensation in Robust Locomotion” at the 2023 Annual Meeting of the Society for Integrative and Comparative Biology was convened to discuss these recent advances, compare and contrast different systems, share experimental advice, and inspire collaborative approaches to expand and synthesize knowledge. The diverse set of speakers presented on a variety of vertebrate, invertebrate, and robotic systems. Discussion at the symposium resulted in a series of manuscripts presented in this issue that address issues facing the broader field, mechanisms of mechanosensation, organismal function and biomechanics, and sensing in ecological and social contexts.more » « less