skip to main content


Search for: All records

Creators/Authors contains: "Katz, Sandor D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. David, G. ; Garg, P. ; Kalweit, A. ; Mukherjee, S. ; Ullrich, T. ; Xu, Z. ; Yoo, I.-K. (Ed.)
    The Taylor expansion approach to the equation of state of QCD at finite chemical potential struggles to reach large chemical potential μ B . This is primarily due to the intrinsic diffculty in precisely determining higher order Taylor coefficients, as well as the structure of the temperature dependence of such observables. In these proceedings, we illustrate a novel scheme [1] that allows us to extrapolate the equation of state of QCD without suffering from the poor convergence typical of the Taylor expansion approach. We continuum extrapolate the coefficients of our new expansion scheme and show the thermodynamic observables up to μ B / T ≤ 3.5. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)