skip to main content

Search for: All records

Creators/Authors contains: "Kaufman, Alan J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Toarcian Oceanic Anoxic Event (T-OAE; ~183 Mya) was a globally significant carbon-cycle perturbation linked to widespread deposition of organic-rich sediments, massive volcanic CO2release, marine faunal extinction, sea-level rise, a crisis in carbonate production related to ocean acidification, and elevated seawater temperatures. Despite recognition of the T-OAE as a potential analog for future ocean deoxygenation, current knowledge on the severity of global ocean anoxia is limited largely to studies of the trace element and isotopic composition of black shales, which are commonly affected by local processes. Here, we present the first carbonate-based uranium isotope (δ238U) record of the T-OAE from open marine platform limestones of the southeastern Tethys Ocean as a proxy for global seawater redox conditions. A significant negative δ238U excursion (~0.4‰) is recorded just prior to the onset of the negative carbon isotope excursion comprised within the T-OAE, followed by a long-lived recovery of δ238U values, thus confirming that the T-OAE represents a global expansion of marine anoxia. Using a Bayesian inverse isotopic mass balance model, we estimate that anoxic waters covered ~6 to 8% of the global seafloor during the peak of the T-OAE, which represents 28 to 38 times the extent of anoxia in the modern ocean. These data, combined with δ238U-based estimates of seafloor anoxic area for other CO2-driven Phanerozoic OAEs, suggest a common response of ocean anoxia to carbon release, thus improving prediction of future anthropogenically induced ocean deoxygenation.

    more » « less
    Free, publicly-accessible full text available July 2, 2025
  2. While molecular clock studies suggest a Tonian-Cryogenian (~800–635 Ma) emergence of the Porifera, convincing fossil evidence of sponges is seen only as far back as ~530 Ma. The >100 Ma lacuna for sponges represents a critical missing piece of the Neoproterozoic puzzle. Assembling an evolutionary framework requires that Poriferan antiquity be understood in terms of sponge form and function, and the emergence of suspension-feeding amid profound environmental and climatic change. Here we report newly discovered biomineralized fossils of sponge-grade animals in Neoproterozoic carbonates of Siberia, Australia, and Brazil. Using a wide range of petrographic, eProbe, µXRF, µCT, and serial grinding techniques, the sponge-grade fossils are shown to be remarkably preserved in three dimensions, displaying broad morphological characters associated with early experiments in biomineralization such as siliceous spicules and external carbonate shells. Reconstructions of their bauplan reveal forms evolutionarily equipped for a suspensionfeeding lifestyle, well-prepared for pumping seawater through their bodies. As ecosystem engineers that clarified the water column and allowed for greater depths of photosynthetic activity, the emergence (and dominance) of sponge-grade animals in shallow marine carbonate reefs had the potential to drive environmental change that is arguably recorded during extremes in the Neoproterozoic carbon cycle. With their global distribution, these animals would link the planktic and benthic realms for the first time in Earth history and represent a sink for the photosynthetically derived organic matter that impacted the oxidation state of the oceans and atmosphere. Notably, most of these fossils are archived in carbonates preserving global expressions of profoundly negative δ13C perturbations. These include the Ediacaran Period Shuram Excursion, which foreshadowed the widespread appearance of the Ediacara biota, and the terminal Cryogenian Period Trezona Anomaly, which immediately preceded the Marinoan snowball Earth. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  3. Free, publicly-accessible full text available October 1, 2024
  4. Abstract

    The Ediacaran biota were soft-bodied organisms, many with enigmatic phylogenetic placement and ecology, living in marine environments between 574 and 539 million years ago. Some studies hypothesize a metazoan affinity and aerobic metabolism for these taxa, whereas others propose a fundamentally separate taxonomic grouping and a reliance on chemoautotrophy. To distinguish between these hypotheses and test the redox-sensitivity of Ediacaran organisms, here we present a high-resolution local and global redox dataset from carbonates that contain in situ Ediacaran fossils from Siberia. Cerium anomalies are consistently >1, indicating that local environments, where a diverse Ediacaran assemblage is preserved in situ as nodules and carbonaceous compressions, were pervasively anoxic. Additionally, δ238U values match other terminal Ediacaran sections, indicating widespread marine euxinia. These data suggest that some Ediacaran biotas were tolerant of at least intermittent anoxia, and thus had the capacity for a facultatively anaerobic lifestyle. Alternatively, these soft-bodied Ediacara organisms may have colonized the seafloor during brief oxygenation events not recorded by redox proxy data. Broad temporal correlations between carbon, sulfur, and uranium isotopes further highlight the dynamic redox landscape of Ediacaran-Cambrian evolutionary events.

    more » « less
  5. null (Ed.)