skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kaufman-Ortiz, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Problem-solving is a critical skill in the workplace, but recent college graduates are often deficient in problem-solving skills. Introductory STEM courses present engineering students with well-structured problems with single-path solutions that do not prepare students with the problem-solving skills they will need to solve complex problems within authentic engineering contexts. When presented with complex problems in authentic contexts, engineering students find it difficult to transfer the scientific knowledge learned in their STEM courses to solve these integrated and ill structured problems. By integrating physics laboratories with engineering design problems, students are taught to apply physics principles to solve ill-structured and complex engineering problems. The integration of engineering design processes to physics labs is meant to help students transfer physics learning to engineering problems, as well as to transfer the design skills learned in their engineering courses to the physics lab. We hypothesize this integration will help students become better problem solvers when they go out to industry after graduation. The purpose of this study is to examine how students transfer their understanding of physics concepts to solve ill-structured engineering problems by means of an engineering design project in a physics laboratory. We use a case-study methodology to examine two cases and analyze the cases using a lens of co-regulated learning and transfer between physics and engineering contexts. Observations were conducted using transfer lenses. That is, we observed groups during the physics labs for evidence of transfer. The research question for this study was, to what extent do students relate physics concepts with concepts from other materials (classes) through an engineering design project incorporated in a physics laboratory? Teams were observed over the course of 6 weeks as they completed the second design challenge. The cases presented in this study were selected using observations from the lab instructors of the team’s work in the first design project. Two teams, one who performed well, and one that performed poorly, were selected to be observed to provide insight on how students use physics concepts to engage in the design process. The second design challenge asked students to design an eco-friendly way of delivering packages of food to an island located in the middle of the river, which is home to critically endangered species. They are given constraints that the solution cannot disrupt the habitat in any way, nor can the animals come into contact directly with humans or loud noises. Preliminary results indicate that both teams successfully demonstrated transfer between physics and engineering contexts, and integrated physics concepts from multiple labs to complete the design project. Teams that struggle seem to be less connected with the design process at the beginning of the project and are less organized. In contrast, teams that are successful demonstrate greater co-regulated learning (communication, reflection, etc.) and focus on making connections between the physics concepts and principles of engineering design from their engineering course work. 
    more » « less
  2. This project uses an ecological belonging intervention approach [1] that requires one-class or one- recitation/discussion session to implement and has been shown to erase long-standing equity gaps in achievement in introductory STEM courses. However, given the wide social and cultural heterogeneity across US university contexts (e.g., differences in regional demographics, history, political climates), it is an open question if and how the intervention may scale. This project brings together an interdisciplinary team across three strategically selected universities to design, test, and iteratively improve an approach to systematically identify which first and second year courses would most benefit from the intervention, reveal student concerns that may be specific to that course, adapt the intervention to address those concerns, and evaluate the universality versus specificity of the intervention across university contexts. This systematic approach also includes persuasion and training processes for onboarding the instructors of the targeted courses. The instructor onboarding and the intervention adaptation processes are guided by a theory-of-action that is the backbone of the project’s research activities and iterative process improvement. A synergistic mixture of qualitative and quantitative methods is used throughout the study. In this paper, we describe our theoretical framing of this ecological belonging intervention and the current efforts of the project in developing customized student stories for the intervention. We have conducted focus groups across each of the partner institutions (University of Pittsburgh, Purdue University, and University of California Irvine). We describe the process of developing these contextually relevant stories and the lessons learned about how this ecological belonging intervention can be translated across institutional contexts and for various STEM majors and systemically minoritized populations. The results of this work can provide actionable strategies for reducing equity gaps in students' degree attainment and achievement in engineering. 
    more » « less