- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
40
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Kaufmann, M. (4)
-
Jones, M. (2)
-
Kobourov, S. (2)
-
Swenson, G. R. (2)
-
Vargas, F. (2)
-
Yee, J. H. (2)
-
Zhu, Y. (2)
-
Angelini, P. (1)
-
Drob, D. P. (1)
-
Forster, H. (1)
-
Frank, F. (1)
-
Hoffmann, M. (1)
-
Liotta, G. (1)
-
Liu, A. (1)
-
Mchedlidze, T. (1)
-
Mlynczak, M. (1)
-
Patrigniani, M. (1)
-
Pupyrev, S. (1)
-
Salinas, C. C. (1)
-
Ueckerdt, T. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
A. E. Lischka (0)
-
A. E. Lischka, E. B. (0)
-
A. E. Lischka, E.B. Dyer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Swenson, G. R. ; Vargas, F. ; Jones, M. ; Zhu, Y. ; Kaufmann, M. ; Yee, J. H. ; Mlynczak, M. ( , Journal of Geophysical Research: Atmospheres)
-
Swenson, G. R. ; Salinas, C. C. ; Vargas, F. ; Zhu, Y. ; Kaufmann, M. ; Jones, M. ; Drob, D. P. ; Liu, A. ; Yue, J. ; Yee, J. H. ( , Journal of Geophysical Research: Atmospheres)
-
Angelini, P. ; Forster, H. ; Hoffmann, M. ; Kaufmann, M. ; Kobourov, S. ; Liotta, G. ; Patrigniani, M. ( , International Symposium on Graph Drawing and Network Visualization)We initiate the study of Simultaneous Graph Embedding with Fixed Edges in the beyond planarity framework. In the QSEFE problem, we allow edge crossings, as long as each graph individually is drawn quasiplanar, that is, no three edges pairwise cross. %We call this problem the QSEFE problem. We show that a triple consisting of two planar graphs and a tree admit a QSEFE. This result also implies that a pair consisting of a 1-planar graph and a planar graph admits a QSEFE. We show several other positive results for triples of planar graphs, in which certain structural properties for their common subgraphs are fulfilled. For the case in which simplicity is also required, we give a triple consisting of two quasiplanar graphs and a star that does not admit a QSEFE. Moreover, in contrast to the planar SEFE problem, we show that it is not always possible to obtain a QSEFE for two matchings if the quasiplanar drawing of one matching is fixed.