skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaushal, Yasha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, we compare star formation histories of massive (10.5 < log ( M * / M ) < 12) galaxies in the UniverseMachine model to those measured from the Large Early Galaxy Astrophysics Census (LEGA-C) at 0.6 < z < 1. Following the LEGA-C study, we investigate how 50% (t50) and 90% (t90) formation timescales depend on total stellar mass. We find good agreement between the observed and model timescales for the star-forming population Δ tSF ≲ 1 Gyr across the full mass range. In contrast, the observed age-mass correlation is weaker for the quiescent population compared to UniverseMachine models (ΔtQ ≲ 2 Gyr), especially at the high-mass end. This indicates continued star formation or additional processes in the most massive quiescent galaxies, a behavior not accounted for in the UniverseMachine model. 
    more » « less
  2. Abstract The measured ages of massive, quiescent galaxies atz∼ 3–4 imply that massive galaxies quench as early asz∼ 6. While the number of spectroscopic confirmations of quiescent galaxies atz< 3 has increased over the years, there are only a handful atz> 3.5. We report spectroscopic redshifts of one secure (z= 3.757) and two tentative (z= 3.336 andz= 4.673) massive ( log ( M * / M ) > 10.3 ) quiescent galaxies with 11 hr of Keck/MOSFIREK-band observations. Our candidates were selected from the FLAMINGOS-2 Extragalactic Near-InfraredK-band Split (FENIKS) survey, which uses deep Gemini/Flamingos-2KbKrimaging optimized for increased sensitivity to the characteristic red colors of galaxies atz> 3 with a strong Balmer/4000 Å break. The rest-frameUVJand (ugi)scolors of three out of four quiescent candidates are consistent with 1–2 Gyr old stellar populations. This places these galaxies as the oldest objects at these redshifts, and challenges the notion that quiescent galaxies atz> 3 are all recently quenched, post-starburst galaxies. Our spectroscopy shows that the other quiescent-galaxy candidate is a broad-line active galactic nucleus (z= 3.594) with strong, redshifted Hβ+ [OIII] emission with a velocity offset > 1000 km s−1, indicative of a powerful outflow. The star formation history of our highest redshift candidate suggests that its progenitor was already in place byz∼ 7–11, reaching ∼1011Mbyz≃ 8. These observations reveal the limit of what is possible with deep near-infrared photometry and targeted spectroscopy from the ground and demonstrate that secure spectroscopic confirmation of quiescent galaxies atz> 4 is feasible only with JWST. 
    more » « less
  3. Abstract We present individual star formation histories (SFHs) of ∼3000 massive galaxies (log(M*/M) > 10.5) from the Large Early Galaxy Astrophysics Census spectroscopic survey at a lookback time of ∼7 billion yr and quantify the population trends leveraging 20 hr deep-integrated spectra of these ∼1800 star-forming and ∼1200 quiescent galaxies at 0.6 <z< 1.0. Essentially all galaxies at this epoch contain stars of age <3 Gyr, in contrast with older massive galaxies today, facilitating better recovery of previous generations of star formation at cosmic noon and earlier. We conduct spectrophotometric analysis using parametric and nonparametric Bayesian stellar population synthesis modeling tools—BagpipesandProspector—to constrain the median SFHs of this mass complete sample and characterize population trends. A consistent picture arises for the late-time stellar mass growth when quantified ast50andt90, corresponding to the age of the Universe when galaxies formed 50% and 90% of their total stellar mass, although the two methods disagree at the earliest formation times (e.g.,t10). Our results reveal trends in both stellar mass and stellar velocity dispersion as in the local Universe—low-mass galaxies with shallower potential wells grow their stellar masses later in cosmic history compared to high-mass galaxies. Unlike local quiescent galaxies, the median duration of late-time star formation (τSF,late=t90–t50) does not consistently depend on the stellar mass. This census sets a benchmark for future deep spectrophotometric studies of the more distant Universe. 
    more » « less