skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaveh, Mostafa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. PurposeTo develop a non‐Cartesian k‐space reconstruction method using self‐calibrated region‐specific interpolation kernels for highly accelerated acquisitions. MethodsIn conventional non‐Cartesian GRAPPA with through‐time GRAPPA (TT‐GRAPPA), the use of region‐specific interpolation kernels has demonstrated improved reconstruction quality in dynamic imaging for highly accelerated acquisitions. However, TT‐GRAPPA requires the acquisition of a large number of separate calibration scans. To reduce the overall imaging time, we propose Self‐calibrated Interpolation of Non‐Cartesian data with GRAPPA (SING) to self‐calibrate region‐specific interpolation kernels from dynamic undersampled measurements. The SING method synthesizes calibration data to adapt to the distinct shape of each region‐specific interpolation kernel geometry, and uses a novel local k‐space regularization through an extension of TT‐GRAPPA. This calibration approach is used to reconstruct non‐Cartesian images at high acceleration rates while mitigating noise amplification. The reconstruction quality of SING is compared with conjugate‐gradient SENSE and TT‐GRAPPA in numerical phantoms and in vivo cine data sets. ResultsIn both numerical phantom and in vivo cine data sets, SING offers visually and quantitatively similar reconstruction quality to TT‐GRAPPA, and provides improved reconstruction quality over conjugate‐gradient SENSE. Furthermore, temporal fidelity in SING and TT‐GRAPPA is similar for the same acceleration rates. G‐factor evaluation over the heart shows that SING and TT‐GRAPPA provide similar noise amplification at moderate and high rates. ConclusionThe proposed SING reconstruction enables significant improvement of acquisition efficiency for calibration data, while matching the reconstruction performance of TT‐GRAPPA. 
    more » « less