skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kawagoe, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study a commutant-closed collection of von Neumann algebras acting on a common Hilbert space indexed by a poset with an order-reversing involution. We give simple geometric axioms for the poset which allow us to construct a braided tensor category of superselection sectors analogous to the construction of Gabbiani and Fröhlich for conformal nets. For cones in$$\mathbb {R}^2$$ R 2 , we weaken our conditions to a bounded spread version of Haag duality and obtain similar results. We show that intertwined nets of algebras have isomorphic braided tensor categories of superselection sectors. Finally, we show that the categories constructed here are equivalent to those constructed by Naaijkens and Ogata for certain 2D quantum spin systems. 
    more » « less
  2. Abstract We show that the Levin-Wen model of a unitary fusion category$${\mathcal {C}}$$ C is a gauge theory with gauge symmetry given by the tube algebra$${\text {Tube}}({\mathcal {C}})$$ Tube ( C ) . In particular, we define a model corresponding to a$${\text {Tube}}({\mathcal {C}})$$ Tube ( C ) symmetry protected topological phase, and we provide a gauging procedure which results in the corresponding Levin-Wen model. In the case$${\mathcal {C}}=\textsf{Hilb}(G,\omega )$$ C = Hilb ( G , ω ) , we show how our procedure reduces to the twisted gauging of a trivalG-SPT to produce the Twisted Quantum Double. We further provide an example which is outside the bounds of the current literature, the trivial Fibbonacci SPT, whose gauge theory results in the doubled Fibonacci string-net. Our formalism has a natural topological interpretation with string diagrams living on a punctured sphere. We provide diagrams to supplement our mathematical proofs and to give the reader an intuitive understanding of the subject matter. 
    more » « less
  3. The recent article by Jones et al. [arXiv:2307.12552 (2023)] gave local topological order (LTO) axioms for a quantum spin system, showed they held in Kitaev’s Toric Code and in Levin-Wen string net models, and gave a bulk boundary correspondence to describe bulk excitations in terms of the boundary net of algebras. In this article, we prove the LTO axioms for Kitaev’s Quantum Double model for a finite group G. We identify the boundary nets of algebras with fusion categorical nets associated to (Hilb(G),C[G]) or (Rep(G),CG) depending on whether the boundary cut is rough or smooth, respectively. This allows us to make connections to the work of Ogata [Ann. Henri Poincaré 25, 2353–2387 (2024)] on the type of the cone von Neumann algebras in the algebraic quantum field theory approach to topological superselection sectors. We show that the boundary algebras can also be calculated from a trivial G-symmetry protected topological phase (G-SPT), and that the gauging map preserves the boundary algebras. Finally, we compute the boundary algebras for the (3 + 1)D Quantum Double model associated to an Abelian group. 
    more » « less
  4. Boundaries of Walker-Wang models have been used to construct commuting projector models which realize chiral unitary modular tensor categories (UMTCs) as boundary excitations. Given a UMTC A representing the Witt class of an anomaly, the article \cite{MR4640433} gave a commuting projector model associated to an A -enriched unitary fusion category X on a 2D boundary of the 3D Walker-Wang model associated to A . That article claimed that the boundary excitations were given by the enriched center/Müger centralizer Z A ( X ) of A in Z ( X ) .In this article, we give a rigorous treatment of this 2D boundary model, and we verify this assertion using topological quantum field theory (TQFT) techniques, including skein modules and a certain semisimple algebra whose representation category describes boundary excitations. We also use TQFT techniques to show the 3D bulk point excitations of the Walker-Wang bulk are given by the Müger center Z 2 ( A ) , and we construct bulk-to-boundary hopping operators Z 2 ( A ) Z A ( X ) reflecting how the UMTC of boundary excitations Z A ( X ) is symmetric-braided enriched in Z 2 ( A ) .This article also includes a self-contained comprehensive review of the Levin-Wen string net model from a unitary tensor category viewpoint, as opposed to the skeletal 6 j symbol viewpoint. 
    more » « less
  5. Abstract We discuss a model for directed percolation in which the flux of material along each bond is a dynamical variable. The model includes a physically significant limiting case where the total flux of material is conserved. We show that the distribution of fluxes is asymptotic to a power law at small fluxes. We give an implicit equation for the exponent, in terms of probabilities characterising site occupations. In one dimension the site occupations are exactly independent, and the model is exactly solvable. In two dimensions, the independent-occupation assumption gives a good approximation. We explore the relationship between this model and traditional models for directed percolation. 
    more » « less