skip to main content

Search for: All records

Creators/Authors contains: "Kay, Jennifer E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this study, we investigate whether the Pacific decadal oscillation (PDO) can enhance or diminish El Niño Southern Oscillation (ENSO) temperature and precipitation teleconnections over North America using five single model initial-condition large ensembles (SMILEs). The use of SMILEs facilitates a statistically robust comparison of ENSO events that occur during different phases of the PDO. We find that a positive PDO enhances winter and spring El Niño temperature and precipitation teleconnections and diminishes La Niña teleconnections. A negative PDO has the opposite effect. The modulation of ENSO by the PDO is mediated by differences in the location and strength of the Aleutian Low and Pacific Jet during ENSO events under different phases of the PDO. This modulation is a simple combination of the individual effects of the PDO and ENSO over North America. Finally, we show that ENSO and the PDO can be used to evaluate the likelihood of the occurrence of temperature and precipitation anomalies in different regions, but cannot be used as a deterministic predictor of these anomalies due to the large variability between individual events.

  2. Excessive precipitation over the southeastern tropical Pacific is a major common bias that persists through generations of global climate models. While recent studies suggest an overly warm Southern Ocean as the cause, models disagree on the quantitative importance of this remote mechanism in light of ocean circulation feedback. Here, using a multimodel experiment in which the Southern Ocean is radiatively cooled, we show a teleconnection from the Southern Ocean to the tropical Pacific that is mediated by a shortwave subtropical cloud feedback. Cooling the Southern Ocean preferentially cools the southeastern tropical Pacific, thereby shifting the eastern tropical Pacific rainbelt northward with the reduced precipitation bias. Regional cloud locking experiments confirm that the teleconnection efficiency depends on subtropical stratocumulus cloud feedback. This subtropical cloud feedback is too weak in most climate models, suggesting that teleconnections from the Southern Ocean to the tropical Pacific are stronger than widely thought.
    Free, publicly-accessible full text available August 23, 2023
  3. Abstract

    A striking feature of the Earth system is that the Northern and Southern Hemispheres reflect identical amounts of sunlight. This hemispheric albedo symmetry comprises two asymmetries: The Northern Hemisphere is more reflective in clear skies, whereas the Southern Hemisphere is cloudier. Here we show that the hemispheric reflection contrast from differences in continental coverage is offset by greater reflection from the Antarctic than the Arctic, allowing the net clear-sky asymmetry to be dominated by aerosol. Climate model simulations suggest that historical anthropogenic aerosol emissions drove a large increase in the clear-sky asymmetry that would reverse in future low-emission scenarios. High-emission scenarios also show decreasing asymmetry, instead driven by declines in Northern Hemisphere ice and snow cover. Strong clear-sky hemispheric albedo asymmetry is therefore a transient feature of Earth’s climate. If all-sky symmetry is maintained, compensating cloud changes would have uncertain but important implications for Earth’s energy balance and hydrological cycle.

  4. Abstract Do changes in ocean heat transport (OHT) that occur with CO 2 forcing, impact climate sensitivity in Earth system models? Changes in OHT with warming are ubiquitous in model experiments: when forced with CO 2 , such models exhibit declining poleward OHT in both hemispheres at most latitudes, which can persist over multicentennial time scales. To understand how changes in OHT may impact how the climate system responds to CO 2 forcing, particularly climate sensitivity, we perform a series of Earth system model experiments in which we systematically perturb OHT (in a slab ocean, relative to its preindustrial control climatology) while simultaneously doubling atmospheric CO 2 . We find that equilibrium climate sensitivity varies substantially with OHT. Specifically, there is a 0.6 K decrease in global mean surface warming for every 10% decline in poleward OHT. Radiative feedbacks from CO 2 doubling, and the warming attributable to each of them, generally become more positive (or less negative) when poleward OHT increases. Water vapor feedback differences account for approximately half the spread in climate sensitivity between experiments, while differences in the lapse rate and surface albedo feedbacks account for the rest. Prescribed changes in OHT instigate opposing changes in atmosphericmore »energy transport and the general circulation, which explain differences in atmospheric water vapor and lapse rate between experiments. Our results show that changes in OHT modify atmospheric radiative feedbacks at all latitudes, thereby driving changes in equilibrium climate sensitivity. More broadly, they demonstrate that radiative feedbacks are not independent of the coupled (atmosphere and ocean) dynamic responses that accompany greenhouse gas forcing.« less
    Free, publicly-accessible full text available May 1, 2023
  5. The sensitivity of sea ice to fire emissions highlights climate model uncertainty related to the accuracy of prescribed forcings.
    Free, publicly-accessible full text available July 29, 2023
  6. Free, publicly-accessible full text available April 1, 2023
  7. Abstract

    The enhanced warming of the Arctic, relative to other parts of the Earth, a phenomenon known as Arctic amplification, is one of the most striking features of climate change, and has important climatic impacts for the entire Northern Hemisphere. Several mechanisms are believed to be responsible for Arctic amplification; however, a quantitative understanding of their relative importance is still missing. Here, using ensembles of model integrations, we quantify the contribution of ocean coupling, both its thermodynamic and dynamic components, to Arctic amplification over the 20th and 21st centuries. We show that ocean coupling accounts for ~80% of the amplification by 2100. In particular, we show that thermodynamic coupling is responsible for future amplification and sea-ice loss as it overcomes the effect of dynamic coupling which reduces the amplification and sea-ice loss by ~35%. Our results demonstrate the utility of targeted numerical experiments to quantify the role of specific mechanisms in Arctic amplification, for better constraining climate projections.

  8. Free, publicly-accessible full text available April 1, 2023