skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kay, Jennifer E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Abstract. Climate simulation uncertainties arise from internal variability, model structure, and external forcings. Model intercomparisons (such as the Coupled Model Intercomparison Project; CMIP) and single-model large ensembles have provided insight into uncertainty sources. Under the Community Earth System Model (CESM) project, large ensembles have been performed for CESM2 (a CMIP6-era model) and CESM1 (a CMIP5-era model). We refer to these as CESM2-LE and CESM1-LE. The external forcing used in these simulations has changed to be consistent with their CMIP generation. As a result, differences between CESM2-LE and CESM1-LE ensemble means arise from changes in both model structure and forcing. Here we present new ensemble simulations which allow us to separate the influences of these model structural and forcing differences. Our new CESM2 simulations are run with CMIP5 forcings equivalent to those used in the CESM1-LE. We find a strong influence of historical forcing uncertainty due to aerosol effects on simulated climate. For the historical period, forcing drives reduced global warming and ocean heat uptake in CESM2-LE relative to CESM1-LE that is counteracted by the influence of model structure. The influence of the model structure and forcing vary across the globe, and the Arctic exhibits a distinct signal that contrasts with the global mean. For the 21st century, the importance of scenario forcing differences (SSP3–7.0 for CESM2-LE and RCP8.5 for CESM1-LE) is evident. The new simulations presented here allow us to diagnose the influence of model structure on 21st century change, despite large scenario forcing differences, revealing that differences in the meridional distribution of warming are caused by model structure. Feedback analysis reveals that clouds and their impact on shortwave radiation explain many of these structural differences between CESM2 and CESM1. In the Arctic, albedo changes control transient climate evolution differences due to structural differences between CESM2 and CESM1.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Abstract

    In this study, we investigate whether the Pacific decadal oscillation (PDO) can enhance or diminish El Niño Southern Oscillation (ENSO) temperature and precipitation teleconnections over North America using five single model initial-condition large ensembles (SMILEs). The use of SMILEs facilitates a statistically robust comparison of ENSO events that occur during different phases of the PDO. We find that a positive PDO enhances winter and spring El Niño temperature and precipitation teleconnections and diminishes La Niña teleconnections. A negative PDO has the opposite effect. The modulation of ENSO by the PDO is mediated by differences in the location and strength of the Aleutian Low and Pacific Jet during ENSO events under different phases of the PDO. This modulation is a simple combination of the individual effects of the PDO and ENSO over North America. Finally, we show that ENSO and the PDO can be used to evaluate the likelihood of the occurrence of temperature and precipitation anomalies in different regions, but cannot be used as a deterministic predictor of these anomalies due to the large variability between individual events.

     
    more » « less
  4. Abstract

    Most observed patterns of recent Arctic surface warming and sea ice loss lie outside of unforced internal climate variability. In contrast, human influence on related changes in outgoing longwave radiation has not been assessed. Outgoing longwave radiation captures the flow of thermal energy from the surface through the atmosphere to space, making it an essential indicator of Arctic change. Furthermore, satellites have measured pan-Arctic radiation for two decades while surface temperature observations remain spatially and temporally sparse. Here, two climate model initial-condition large ensembles and satellite observations are used to investigate when and why twenty-first-century Arctic outgoing longwave radiation changes emerge from unforced internal climate variability. Observationally, outgoing longwave radiation changes from 2001 to 2021 are within the range of unforced internal variability for all months except October. The model-predicted timing of Arctic longwave radiation emergence varies throughout the year. Specifically, fall emergence occurs a decade earlier than spring emergence. These large emergence timing differences result from seasonally dependent sea ice loss and surface warming. The atmosphere and clouds then widen these seasonal differences by delaying emergence more in the spring and winter than in the fall. Finally, comparison of the two ensembles shows that more sea ice and a more transparent atmosphere during the melt season led to an earlier emergence of forced longwave radiation changes. Overall, these findings demonstrate that attributing changes in Arctic outgoing longwave radiation to human influence requires understanding the seasonality of both forced change and internal climate variability.

     
    more » « less
  5. Excessive precipitation over the southeastern tropical Pacific is a major common bias that persists through generations of global climate models. While recent studies suggest an overly warm Southern Ocean as the cause, models disagree on the quantitative importance of this remote mechanism in light of ocean circulation feedback. Here, using a multimodel experiment in which the Southern Ocean is radiatively cooled, we show a teleconnection from the Southern Ocean to the tropical Pacific that is mediated by a shortwave subtropical cloud feedback. Cooling the Southern Ocean preferentially cools the southeastern tropical Pacific, thereby shifting the eastern tropical Pacific rainbelt northward with the reduced precipitation bias. Regional cloud locking experiments confirm that the teleconnection efficiency depends on subtropical stratocumulus cloud feedback. This subtropical cloud feedback is too weak in most climate models, suggesting that teleconnections from the Southern Ocean to the tropical Pacific are stronger than widely thought. 
    more » « less
  6. Abstract

    A striking feature of the Earth system is that the Northern and Southern Hemispheres reflect identical amounts of sunlight. This hemispheric albedo symmetry comprises two asymmetries: The Northern Hemisphere is more reflective in clear skies, whereas the Southern Hemisphere is cloudier. Here we show that the hemispheric reflection contrast from differences in continental coverage is offset by greater reflection from the Antarctic than the Arctic, allowing the net clear-sky asymmetry to be dominated by aerosol. Climate model simulations suggest that historical anthropogenic aerosol emissions drove a large increase in the clear-sky asymmetry that would reverse in future low-emission scenarios. High-emission scenarios also show decreasing asymmetry, instead driven by declines in Northern Hemisphere ice and snow cover. Strong clear-sky hemispheric albedo asymmetry is therefore a transient feature of Earth’s climate. If all-sky symmetry is maintained, compensating cloud changes would have uncertain but important implications for Earth’s energy balance and hydrological cycle.

     
    more » « less
  7. Abstract

    The influence of climate feedbacks on regional hydrological changes under warming is poorly understood. Here, a moist energy balance model (MEBM) with a Hadley Cell parameterization is used to isolate the influence of climate feedbacks on changes in zonal‐mean precipitation‐minus‐evaporation (P − E) under greenhouse‐gas forcing. It is shown that cloud feedbacks act to narrow bands of tropicalP − Eand increaseP − Ein the deep tropics. The surface‐albedo feedback shifts the location of maximum tropicalP − Eand increasesP − Ein the polar regions. The intermodel spread in theP − Echanges associated with feedbacks arises mainly from cloud feedbacks, with the lapse‐rate and surface‐albedo feedbacks playing important roles in the polar regions. TheP − Echange associated with cloud feedback locking in the MEBM is similar to that of a climate model with inactive cloud feedbacks. This work highlights the unique role that climate feedbacks play in causing deviations from the “wet‐gets‐wetter, dry‐gets‐drier” paradigm.

     
    more » « less
  8. Abstract Do changes in ocean heat transport (OHT) that occur with CO 2 forcing, impact climate sensitivity in Earth system models? Changes in OHT with warming are ubiquitous in model experiments: when forced with CO 2 , such models exhibit declining poleward OHT in both hemispheres at most latitudes, which can persist over multicentennial time scales. To understand how changes in OHT may impact how the climate system responds to CO 2 forcing, particularly climate sensitivity, we perform a series of Earth system model experiments in which we systematically perturb OHT (in a slab ocean, relative to its preindustrial control climatology) while simultaneously doubling atmospheric CO 2 . We find that equilibrium climate sensitivity varies substantially with OHT. Specifically, there is a 0.6 K decrease in global mean surface warming for every 10% decline in poleward OHT. Radiative feedbacks from CO 2 doubling, and the warming attributable to each of them, generally become more positive (or less negative) when poleward OHT increases. Water vapor feedback differences account for approximately half the spread in climate sensitivity between experiments, while differences in the lapse rate and surface albedo feedbacks account for the rest. Prescribed changes in OHT instigate opposing changes in atmospheric energy transport and the general circulation, which explain differences in atmospheric water vapor and lapse rate between experiments. Our results show that changes in OHT modify atmospheric radiative feedbacks at all latitudes, thereby driving changes in equilibrium climate sensitivity. More broadly, they demonstrate that radiative feedbacks are not independent of the coupled (atmosphere and ocean) dynamic responses that accompany greenhouse gas forcing. 
    more » « less
  9. Abstract

    Clouds are parameterized in climate models using quantities on the model grid‐scale to approximate the cloud cover and impact on radiation. Because of the complexity of processes involved with clouds, these parameterizations are one of the key challenges in climate modeling. Differences in parameterizations of clouds are among the main contributors to the spread in climate sensitivity across models. In this work, the clouds in three generations of an atmosphere model lineage are evaluated against satellite observations. Satellite simulators are used within the model to provide an appropriate comparison with individual satellite products. In some respects, especially the top‐of‐atmosphere cloud radiative effect, the models show generational improvements. The most recent generation, represented by two distinct branches of development, exhibits some regional regressions in the cloud representation; in particular the southern ocean shows a positive bias in cloud cover. The two branches of model development show how choices during model development, both structural and parametric, lead to different cloud climatologies. Several evaluation strategies are used to quantify the spatial errors in terms of the large‐scale circulation and the cloud structure. The Earth mover's distance is proposed as a useful error metric for the passive satellite data products that provide cloud‐top pressure‐optical depth histograms. The cloud errors identified here may contribute to the high climate sensitivity in the Community Earth System Model, version 2 and in the Energy Exascale Earth System Model, version 1.

     
    more » « less
  10. The sensitivity of sea ice to fire emissions highlights climate model uncertainty related to the accuracy of prescribed forcings. 
    more » « less