Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Plants are continuously exposed to diurnal fluctuations in light and temperature, and spontaneous changes in their physical or biotic environment. The circadian clock coordinates regulation of gene expression with a 24 h period, enabling the anticipation of these events.
We used RNA sequencing to characterize the
Brachypodium distachyon transcriptome under light and temperature cycles, as well as under constant conditions.Approximately 3% of the transcriptome was regulated by the circadian clock, a smaller proportion than reported in most other species. For most transcripts that were rhythmic under all conditions, including many known clock genes, the period of gene expression lengthened from 24 to 27 h in the absence of external cues. To functionally characterize the cyclic transcriptome in
B. distachyon , we used Gene Ontology enrichment analysis, and found several terms significantly associated with peak expression at particular times of the day. Furthermore, we identified sequence motifs enriched in the promoters of similarly phased genes, some potentially associated with transcription factors.When considering the overlap in rhythmic gene expression and specific pathway behavior, thermocycles was the prevailing cue that controlled diurnal gene regulation. Taken together, our characterization of the rhythmic
B. distachyon transcriptome represents a foundational resource with implications in other grass species. -
Abstract ARGONAUTES are the central effector proteins of
RNA silencing which bind target transcripts in a smallRNA ‐guided manner.Arabidopsis thaliana has 10 (ARGONAUTE ) genes, with specialized roles inAGO RNA ‐directedDNA methylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization among genes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO ,AGO 1 , andAGO 10 using yeast 1‐hybrid assays. A ranked list of candidateAGO 7DNA ‐bindingTF s revealed binding of the promoter by a number of proteins in two families: the miR156‐regulatedAGO 7SPL family and the miR319‐regulatedTCP family, both of which have roles in developmental timing and leaf morphology. Possible functions forSPL andTCP binding are unclear: we showed that these binding sites are not required for the polar expression pattern of , nor for the function ofAGO 7 in leaf shape. NormalAGO 7 transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO 7AGO 7‐triggered pathway functions in timing and polarity.TAS 3