- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Belden, Elizabeth R (1)
-
Belden, Elizabeth R. (1)
-
Castro-Dominguez, Bernardo (1)
-
Ferrara, Owen G. (1)
-
Himebaugh, Eric T. (1)
-
Kazantzis, Nikolaos K (1)
-
Kazantzis, Nikolaos K. (1)
-
Paffenroth, Randy C. (1)
-
Rando, Matthew (1)
-
Reed, Madison R (1)
-
Skangos, Christopher A. (1)
-
Timko, Michael T (1)
-
Timko, Michael T. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Less than 5% of polystyrene is recycled, motivating a search for energy efficient and economical methods for polystyrene recycling that can be deployed at scale. One option is chemical recycling, consisting of thermal depolymerization and purification to produce monomer-grade styrene (>99%) and other co-products. Thermal depolymerization and distillation are readily scalable, well-established technologies; however, to be considered practical, they must be thermodynamically efficient, economically feasible, and environmentally responsible. Accordingly, mass and energy balances of a pyrolysis reactor for thermal depolymerization and two distillation columns to separate styrene from α-methyl styrene, styrene dimer, toluene, and ethyl benzene co-products, were simulated using ASPEN to evaluate thermodynamic and economic feasibility. These simulations indicate that monomer-grade styrene can be recovered with energy inputs <10MJ/kg, comparable to the energy content of pyrolysis co-products. Thermodynamic sensitivity analysis indicates the scope to reduce these values and enhance the robustness of the predictions. A probabilistic economic analysis of multiple scenarios combined with detailed sensitivity analysis indicates that the cost for recycled styrene is approximately twice the historical market value of fossil-derived styrene when styrene costs are fixed at 15% of the total product cost or less than the historical value when feedstock costs are assumed to be zero. A Monte Carlo and Net Present Value-based economic performance analysis indicates that chemical recycling is economically viable for scenarios assuming realistic feedstock costs. Furthermore, the CO2 abatement cost is roughly $1.5 per ton of averted CO2, relative to a pyrolysis process system to produce fuels. As much as 60% of all polystyrene used today could be replaced by chemically recycled styrene, thus quantifying the potential benefits of this readily scalable approach.more » « less
-
Belden, Elizabeth R.; Rando, Matthew; Ferrara, Owen G.; Himebaugh, Eric T.; Skangos, Christopher A.; Kazantzis, Nikolaos K.; Paffenroth, Randy C.; Timko, Michael T. (, ACS Engineering Au)
An official website of the United States government
