skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ke, Changhong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Controlling the thermal expansion of ceramic materials is important for many of their applications that involve high-temperature processing and/or working conditions. In this study, we investigate the thermal expansion properties of additively manufactured alumina that is reinforced with boron nitride nanotubes (BNNTs) over a broad temperature range, from room temperature to 900 °C. The coefficient of thermal expansion (CTE) of the BNNT-alumina nanocomposite increases with temperature but decreases with an increase in BNNT loading. The introduction of 0.6% BNNTs results in an approximate 16% reduction in the CTE of alumina. The observed significant CTE reduction of ceramics is attributed to the BNNT’s low CTE and ultrahigh Young’s modulus, and effective interfacial load transfer at the BNNT-ceramic interface. Micromechanical analysis, based onin situRaman measurements, reveals the transition of thermal-expansion-induced interface straining of nanotubes, which shifts from compression to tension inside the ceramic matrix under thermal loadings. This study provides valuable insights into the thermomechanical behavior of BNNT-reinforced ceramic nanocomposites and contributes to the optimal design of ceramic materials with tunable and zero CTE.

     
    more » « less
  2. Understanding the kinetics of nanobubbles encapsulated by ultrathin two-dimensional (2D) layered van der Waals crystal membranes on atomically flat substrates is important to the applications of 2D materials and the pursuit of 2D nanobubble technologies. Here, we investigate the controlled motion of monolayer molybdenum disulfide (MoS2)-encapsulated nanobubbles on flat hexagonal boron nitride substrates using atomic force microscopy (AFM). Our study reveals a distinct transition from standstill bubble deformations to stable, stepwise bubble translations on flat substrates. The membrane tension-dominated 2D nanobubble behaves like an elastic soft body in its collision interaction with the AFM tip. This delicate motion-control technique enables neighboring 2D nanobubbles to move closer and eventually coalesce into larger nanobubbles. These findings pave the way for high-precision manipulation of nanobubbles and facilitate the exploration of their emerging applications.

     
    more » « less
    Free, publicly-accessible full text available September 9, 2025
  3. Free, publicly-accessible full text available March 22, 2025
  4. Abstract

    The oxidation mechanism of atomically thin molybdenum disulfide (MoS2) plays a critical role in its nanoelectronics, optoelectronics, and catalytic applications, where devices often operate in an elevated thermal environment. In this study, we systematically investigate the oxidation of mono- and few-layer MoS2flakes in the air at temperatures ranging from 23 °C to 525 °C and relative humidities of 10%–60% by using atomic force microscopy (AFM), Raman spectroscopy and x-ray photoelectron spectroscopy. Our study reveals the formation of a uniform nanometer-thick physical adsorption layer on the surface of MoS2, which is attributed to the adsorption of ambient moisture. This physical adsorption layer acts as a thermal shield of the underlying MoS2lattice to enhance its thermal stability and can be effectively removed by an AFM tip scanning in contact mode or annealing at 400 °C. Our study shows that high-temperature thermal annealing and AFM tip-based cleaning result in chemical adsorption on sulfur vacancies in MoS2, leading to p-type doping. Our study highlights the importance of humidity control in ensuring reliable and optimal performance for MoS2-based electronic and electrochemical devices and provides crucial insights into the surface engineering of MoS2, which are relevant to the study of other two-dimensional transition metal dichalcogenide materials and their applications.

     
    more » « less
  5. Continuum mechanics break down in bending stiffness calculations of mono- and few-layered two-dimensional (2D) van der Waals crystal sheets, because their layered atomistic structures are uniquely characterized by strong in-plane bonding coupled with weak interlayer interactions. Here, we elucidate how the bending rigidities of pristine mono- and few-layered molybdenum disulfide (MoS 2 ), graphene, and hexagonal boron nitride (hBN) are governed by their structural geometry and intra- and inter-layer bonding interactions. Atomic force microscopy experiments on the self-folded conformations of these 2D materials on flat substrates show that the bending rigidity of MoS 2 significantly exceeds those of graphene or hBN of comparable layers, despite its much lower tensile modulus. Even on a per-thickness basis, MoS 2 is found to possess similar bending stiffness to hBN and is much stiffer than graphene. Density functional theory calculations suggest that this high bending rigidity of MoS 2 is due to its large interlayer thickness and strong interlayer shear, which prevail over its weak in-plane bonding. 
    more » « less
  6. Abstract Atomic force microscope (AFM)-based nanolithography is a cost-effective nanopatterning technique that can fabricate nanostructures with arbitrary shapes. However, existing AFM-based nanopatterning approaches have limitations in the patterning resolution and efficiency. Minimum feature size and machining performance in the mechanical force-induced nanofabrication process are limited by the radius and sharpness of the AFM tip. Electric-field-assisted atomic force microscope (E-AFM) nanolithography can fabricate nanopatterns with features smaller than the tip radius, but it is very challenging to find the appropriate input parameter window. The tip bias range in E-AFM process is typically very small and varies for each AFM tip due to the variations in tip geometry, tip end diameter, and tip conductive coating thickness. This paper demonstrates a novel electric-field and mechanical vibration-assisted AFM-based nanofabrication approach, which enables high-resolution (sub-10 nm toward sub-5 nm) and high-efficiency nanopatterning processes. The integration of in-plane vibration with the electric field increases the patterning speed, broadens the selectable ranges of applied voltages, and reduces the minimum tip bias required for nanopatterning as compared with E-AFM process, which significantly increases the versatility and capability of AFM-based nanopatterning and effectively avoids the tip damage. 
    more » « less
  7. Abstract Electric-field-assisted atomic force microscope (E-AFM) nanolithography is a novel polymer-patterning technique that has diverse applications. E-AFM uses a biased AFM tip with conductive coatings to make patterns with little probe-sample interaction, which thereby avoids the tip wear that is a major issue for contact-mode AFM-based lithography, which usually requires a high probe-sample contact force to fabricate nanopatterns; however, the relatively large tip radius and large tip-sample separation limit its capacity to fabricate high-resolution nanopatterns. In this paper, we developed a contact mode E-AFM nanolithography approach to achieve high-resolution nanolithography of poly (methyl methacrylate) (PMMA) using a conductive AFM probe with a low stiffness (~0.16 N/m). The nanolithography process generates features by biasing the AFM probe across a thin polymer film on a metal substrate. A small constant force (0.5-1 nN) applied on the AFM tip helps engage the tip-film contact, which enhances nanomachining resolution. This E-AFM nanolithography approach enables high-resolution nanopatterning with feature width down to ~16 nm, which is less than one half of the nominal tip radius of the employed conductive AFM probes. 
    more » « less