skip to main content

Search for: All records

Creators/Authors contains: "Ke, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large-scale panel data is ubiquitous in many modern data science applications. Conventional panel data analysis methods fail to address the new challenges, like individual impacts of covariates, endogeneity, embedded low-dimensional structure, and heavy-tailed errors, arising from the innovation of data collection platforms on which applications operate. In response to these challenges, this paper studies large-scale panel data with an interactive effects model. This model takes into account the individual impacts of covariates on each spatial node and removes the exogenous condition by allowing latent factors to affect both covariates and errors. Besides, we waive the sub-Gaussian assumption and allow themore »errors to be heavy-tailed. Further, we propose a data-driven procedure to learn a parsimonious yet flexible homogeneity structure embedded in high-dimensional individual impacts of covariates. The homogeneity structure assumes that there exists a partition of regression coeffcients where the coeffcients are the same within each group but different between the groups. The homogeneity structure is flexible as it contains many widely assumed low dimensional structures (sparsity, global impact, etc.) as its special cases. Non-asymptotic properties are established to justify the proposed learning procedure. Extensive numerical experiments demonstrate the advantage of the proposed learning procedure over conventional methods especially when the data are generated from heavy-tailed distributions.« less
  2. Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hardmore »scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy.« less
    Free, publicly-accessible full text available December 1, 2023
  3. Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed tomore »meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.« less
    Free, publicly-accessible full text available December 1, 2023
  4. Free, publicly-accessible full text available May 1, 2023
  5. Free, publicly-accessible full text available May 1, 2023
  6. Abstract The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $$10more »situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by $${\sim }2\%$$ ∼ 2 % across a large part of the $$p_{\text {T}}$$ p T spectrum in the central region and underestimated by $${\sim }4\%$$ ∼ 4 % in the endcaps in the ATLAS simulation. The uncertainties in the measurements are $${\lesssim }1\%$$ ≲ 1 % for $$15« less
    Free, publicly-accessible full text available March 1, 2023
  7. A bstract Searches are conducted for new spin-0 or spin-1 bosons using events where a Higgs boson with mass 125 GeV decays into four leptons ( ℓ = e , μ ). This decay is presumed to occur via an intermediate state which contains two on-shell, promptly decaying bosons: H → XX/ZX → 4 ℓ , where the new boson X has a mass between 1 and 60 GeV. The search uses pp collision data collected with the ATLAS detector at the LHC with an integrated luminosity of 139 fb − 1 at a centre-of-mass energy $$ \sqrt{s} $$ smore »= 13 TeV. The data are found to be consistent with Standard Model expectations. Limits are set on fiducial cross sections and on the branching ratio of the Higgs boson to decay into XX/ZX , improving those from previous publications by a factor between two and four. Limits are also set on mixing parameters relevant in extensions of the Standard Model containing a dark sector where X is interpreted to be a dark boson.« less
    Free, publicly-accessible full text available March 1, 2023